हिंदी

Differentiate X X Cos X + X 2 + 1 X 2 − 1 ? - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate  \[x^{x \cos x +} \frac{x^2 + 1}{x^2 - 1}\]  ?

उत्तर

\[\text{ Let y }= x^{x \cos x} + \frac{x^2 + 1}{x^2 - 1}\]

\[\text{ Also, Let u } = x^{x \cos x} \text{ and v } = \frac{x^2 + 1}{x^2 - 1}\]

\[ \therefore y = u + v\]

\[ \Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} . . . \left( i \right)\]

\[\text{ Now, u }= x^{x \cos x} \]

\[ \Rightarrow \log u = \log\left( x^{x \cos x} \right)\]

\[ \Rightarrow \log u = x \cos x \log x\]

Differentiating both sides with respect to x,

\[\frac{1}{u}\frac{du}{dx} = \cos x \log x\frac{d}{dx}\left( x \right) + x\log x\frac{d}{dx}\left( \cos x \right) + x \cos x\frac{d}{dx}\left( \log x \right)\]

\[ \Rightarrow \frac{du}{dx} = u\left[ \cos x \log x + x\left( - \sin x \right)\log x + x \cos x\left( \frac{1}{x} \right) \right]\]

\[ \Rightarrow \frac{du}{dx} = x^{x \cos x} \left( \cos x \log x - x \sin x \log x + \cos x \right)\]

\[ \Rightarrow \frac{du}{dx} = x^{x \cos x} \left[ \cos x\left( 1 + \log x \right) - x \sin x \log x \right] . . . \left( 2 \right)\]

\[\text{ Again, v }= \frac{x^2 + 1}{x^2 - 1}\]

\[ \Rightarrow \log v = \log\left( x^2 + 1 \right) - \log\left( x^2 - 1 \right)\]

Differentiating both sides with respect to x,

\[\frac{1}{v}\frac{dv}{dx} = \frac{2x}{x^2 + 1} - \frac{2x}{x^2 - 1}\]

\[ \Rightarrow \frac{dv}{dx} = v\left[ \frac{2x\left( x^2 - 1 \right) - 2x\left( x^2 + 1 \right)}{\left( x^2 + 1 \right)\left( x^2 - 1 \right)} \right]\]

\[ \Rightarrow \frac{dv}{dx} = \frac{x^2 + 1}{x^2 - 1}\left[ \frac{- 4x}{\left( x^2 + 1 \right)\left( x^2 - 1 \right)} \right]\]

\[ \Rightarrow \frac{dv}{dx} = \frac{- 4x}{\left( x^2 - 1 \right)^2} . . . \left( 3 \right)\]

\[\text{ From} \left( i \right), \left( ii \right) \text{ and } \left( iii \right), \text{ we obtain}\]

\[\frac{dy}{dx} = x^{x \cos x} \left[ \cos x\left( 1 + \log x \right) - x \sin x \log x \right] - \frac{4x}{\left( x^2 - 1 \right)^2}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Differentiation - Exercise 11.05 [पृष्ठ ८८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 11 Differentiation
Exercise 11.05 | Q 18.3 | पृष्ठ ८८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Differentiate the following functions from first principles ecos x.


​Differentiate the following function from first principles \[e^\sqrt{\cot x}\] .


Differentiate \[e^{\sin} \sqrt{x}\] ?


Differentiate \[3^{x^2 + 2x}\] ?


Differentiate \[\sqrt{\tan^{- 1} \left( \frac{x}{2} \right)}\] ?


Differentiate \[\sin^{- 1} \left( \frac{x}{\sqrt{x^2 + a^2}} \right)\] ?


Differentiate \[\log \left( \cos x^2 \right)\] ?


Differentiate \[\cos^{- 1} \left\{ 2x\sqrt{1 - x^2} \right\}, \frac{1}{\sqrt{2}} < x < 1\] ?


Differentiate  \[\sin^{- 1} \left\{ \sqrt{\frac{1 - x}{2}} \right\}, 0 < x < 1\]  ?


Differentiate \[\sin^{- 1} \left( 2 x^2 - 1 \right), 0 < x < 1\]  ?


Differentiate \[\sin^{- 1} \left( 1 - 2 x^2 \right), 0 < x < 1\] ?


Differentiate \[\tan^{- 1} \left( \frac{a + b \tan x}{b - a \tan x} \right)\] ?


If \[y = \tan^{- 1} \left( \frac{\sqrt{1 + x} - \sqrt{1 - x}}{\sqrt{1 + x} + \sqrt{1 - x}} \right), \text{find } \frac{dy}{dx}\] ?


If \[\sin^2 y + \cos xy = k,\] find  \[\frac{dy}{dx}\] at \[x = 1 , \] \[y = \frac{\pi}{4} .\] 


If \[y = \left\{ \log_{\cos x} \sin x \right\} \left\{ \log_{\sin x} \cos x \right\}^{- 1} + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right), \text{ find } \frac{dy}{dx} \text{ at }x = \frac{\pi}{4}\] ?


Differentiate \[\left( 1 + \cos x \right)^x\] ?


Differentiate \[x^{\cos^{- 1} x}\] ?


If \[e^y = y^x ,\] prove that\[\frac{dy}{dx} = \frac{\left( \log y \right)^2}{\log y - 1}\] ?


Find \[\frac{dy}{dx}\], when \[x = a t^2 \text{ and } y = 2\ at \] ?


Differentiate (log x)x with respect to log x ?


If \[y = x^x , \text{ find } \frac{dy}{dx} \text{ at } x = e\] ?


If \[y = \tan^{- 1} \left( \frac{1 - x}{1 + x} \right), \text{ find} \frac{dy}{dx}\]  ?


If \[x = 3\sin t - \sin3t, y = 3\cos t - \cos3t \text{ find }\frac{dy}{dx} \text{ at } t = \frac{\pi}{3}\] ?


If \[x^y = e^{x - y} ,\text{ then } \frac{dy}{dx}\] is __________ .


If \[\sin \left( x + y \right) = \log \left( x + y \right), \text { then } \frac{dy}{dx} =\] ___________ .


\[\frac{d}{dx} \left\{ \tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right) \right\} \text { equals }\] ______________ .


Find the second order derivatives of the following function e6x cos 3x  ?


If \[y = \left[ \log \left( x + \sqrt{x^2 + 1} \right) \right]^2\] show that \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 2\] ?


If y = ex (sin + cos x) prove that \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\] ?


If  \[y = e^{a \cos^{- 1}} x\] ,prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - a^2 y = 0\] ?


If y log (1 + cos x), prove that \[\frac{d^3 y}{d x^3} + \frac{d^2 y}{d x^2} \cdot \frac{dy}{dx} = 0\] ?


\[ \text { If x } = a \sin t \text { and y } = a\left( \cos t + \log \tan\frac{t}{2} \right), \text { find } \frac{d^2 y}{d x^2} \] ?


\[\text { If x } = a\left( \cos t + t \sin t \right) \text { and y} = a\left( \sin t - t \cos t \right),\text { then find the value of } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?


If x = t2 and y = t3, find \[\frac{d^2 y}{d x^2}\] ?


If y = x + ex, find \[\frac{d^2 x}{d y^2}\] ?


If f(x) = (cos x + i sin x) (cos 2x + i sin 2x) (cos 3x + i sin 3x) ...... (cos nx + i sin nx) and f(1) = 1, then f'' (1) is equal to

 


If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =


If \[y = \log_e \left( \frac{x}{a + bx} \right)^x\] then x3 y2 =

 


Find the minimum value of (ax + by), where xy = c2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×