Advertisements
Advertisements
Question
Differentiate \[x^{x \cos x +} \frac{x^2 + 1}{x^2 - 1}\] ?
Solution
\[\text{ Let y }= x^{x \cos x} + \frac{x^2 + 1}{x^2 - 1}\]
\[\text{ Also, Let u } = x^{x \cos x} \text{ and v } = \frac{x^2 + 1}{x^2 - 1}\]
\[ \therefore y = u + v\]
\[ \Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} . . . \left( i \right)\]
\[\text{ Now, u }= x^{x \cos x} \]
\[ \Rightarrow \log u = \log\left( x^{x \cos x} \right)\]
\[ \Rightarrow \log u = x \cos x \log x\]
Differentiating both sides with respect to x,
\[\frac{1}{u}\frac{du}{dx} = \cos x \log x\frac{d}{dx}\left( x \right) + x\log x\frac{d}{dx}\left( \cos x \right) + x \cos x\frac{d}{dx}\left( \log x \right)\]
\[ \Rightarrow \frac{du}{dx} = u\left[ \cos x \log x + x\left( - \sin x \right)\log x + x \cos x\left( \frac{1}{x} \right) \right]\]
\[ \Rightarrow \frac{du}{dx} = x^{x \cos x} \left( \cos x \log x - x \sin x \log x + \cos x \right)\]
\[ \Rightarrow \frac{du}{dx} = x^{x \cos x} \left[ \cos x\left( 1 + \log x \right) - x \sin x \log x \right] . . . \left( 2 \right)\]
\[\text{ Again, v }= \frac{x^2 + 1}{x^2 - 1}\]
\[ \Rightarrow \log v = \log\left( x^2 + 1 \right) - \log\left( x^2 - 1 \right)\]
Differentiating both sides with respect to x,
\[\frac{1}{v}\frac{dv}{dx} = \frac{2x}{x^2 + 1} - \frac{2x}{x^2 - 1}\]
\[ \Rightarrow \frac{dv}{dx} = v\left[ \frac{2x\left( x^2 - 1 \right) - 2x\left( x^2 + 1 \right)}{\left( x^2 + 1 \right)\left( x^2 - 1 \right)} \right]\]
\[ \Rightarrow \frac{dv}{dx} = \frac{x^2 + 1}{x^2 - 1}\left[ \frac{- 4x}{\left( x^2 + 1 \right)\left( x^2 - 1 \right)} \right]\]
\[ \Rightarrow \frac{dv}{dx} = \frac{- 4x}{\left( x^2 - 1 \right)^2} . . . \left( 3 \right)\]
\[\text{ From} \left( i \right), \left( ii \right) \text{ and } \left( iii \right), \text{ we obtain}\]
\[\frac{dy}{dx} = x^{x \cos x} \left[ \cos x\left( 1 + \log x \right) - x \sin x \log x \right] - \frac{4x}{\left( x^2 - 1 \right)^2}\]
APPEARS IN
RELATED QUESTIONS
Differentiate the following functions from first principles ecos x.
Differentiate the following functions from first principles x2ex ?
Differentiate tan2 x ?
Differentiate sin (log x) ?
Differentiate \[e^{3 x} \cos 2x\] ?
Differentiate \[\tan \left( e^{\sin x }\right)\] ?
Differentiate \[\log \left( \frac{x^2 + x + 1}{x^2 - x + 1} \right)\] ?
Differentiate \[e^{\tan^{- 1}} \sqrt{x}\] ?
If \[y = \log \sqrt{\frac{1 + \tan x}{1 - \tan x}}\] prove that \[\frac{dy}{dx} = \sec 2x\] ?
If \[y = e^x \cos x\] ,prove that \[\frac{dy}{dx} = \sqrt{2} e^x \cdot \cos \left( x + \frac{\pi}{4} \right)\] ?
If \[y = x \sin^{- 1} x + \sqrt{1 - x^2}\] ,prove that \[\frac{dy}{dx} = \sin^{- 1} x\] ?
Differentiate \[\sin^{- 1} \left( 1 - 2 x^2 \right), 0 < x < 1\] ?
Differentiate
\[\tan^{- 1} \left( \frac{\cos x + \sin x}{\cos x - \sin x} \right), \frac{\pi}{4} < x < \frac{\pi}{4}\] ?
Find \[\frac{dy}{dx}\] in the following case \[x^5 + y^5 = 5 xy\] ?
If \[x \sqrt{1 + y} + y \sqrt{1 + x} = 0\] , prove that \[\left( 1 + x \right)^2 \frac{dy}{dx} + 1 = 0\] ?
If \[\sec \left( \frac{x + y}{x - y} \right) = a\] Prove that \[\frac{dy}{dx} = \frac{y}{x}\] ?
Differentiate \[x^{\sin x}\] ?
Differentiate \[\left( \sin^{- 1} x \right)^x\] ?
Differentiate \[\left( x^x \right) \sqrt{x}\] ?
If \[y = x \sin y\] , prove that \[\frac{dy}{dx} = \frac{y}{x \left( 1 - x \cos y \right)}\] ?
If \[y^x + x^y + x^x = a^b\] ,find \[\frac{dy}{dx}\] ?
If \[x = a\sin2t\left( 1 + \cos2t \right) \text { and y } = b\cos2t\left( 1 - \cos2t \right)\] , show that at \[t = \frac{\pi}{4}, \frac{dy}{dx} = \frac{b}{a}\] ?
Differentiate \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right)\] with respect to \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right), \text { if } - \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?
If \[y = \sin^{- 1} x + \cos^{- 1} x\] ,find \[\frac{dy}{dx}\] ?
The derivative of \[\sec^{- 1} \left( \frac{1}{2 x^2 + 1} \right) \text { w . r . t }. \sqrt{1 + 3 x} \text { at } x = - 1/3\]
If \[3 \sin \left( xy \right) + 4 \cos \left( xy \right) = 5, \text { then } \frac{dy}{dx} =\] _____________ .
If \[f\left( x \right) = \left| x - 3 \right| \text { and }g\left( x \right) = fof \left( x \right)\] is equal to __________ .
If \[y = \log \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] __________ .
If y = x3 log x, prove that \[\frac{d^4 y}{d x^4} = \frac{6}{x}\] ?
If y = 2 sin x + 3 cos x, show that \[\frac{d^2 y}{d x^2} + y = 0\] ?
If x = a(1 − cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = - \frac{1}{a}\text { at } \theta = \frac{\pi}{2}\] ?
If \[y = e^{2x} \left( ax + b \right)\] show that \[y_2 - 4 y_1 + 4y = 0\] ?
If y = 3 e2x + 2 e3x, prove that \[\frac{d^2 y}{d x^2} - 5\frac{dy}{dx} + 6y = 0\] ?
\[\text { If x } = \cos t + \log \tan\frac{t}{2}, y = \sin t, \text { then find the value of } \frac{d^2 y}{d t^2} \text { and } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?
\[\text { If x } = a\left( \cos t + t \sin t \right) \text { and y} = a\left( \sin t - t \cos t \right),\text { then find the value of } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?
If \[x = 3 \cos t - 2 \cos^3 t, y = 3\sin t - 2 \sin^3 t,\] find \[\frac{d^2 y}{d x^2} \] ?
\[\text { If x } = a \sin t - b \cos t, y = a \cos t + b \sin t, \text { prove that } \frac{d^2 y}{d x^2} = - \frac{x^2 + y^2}{y^3} \] ?
If x = sin t and y = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] .