Advertisements
Advertisements
Question
Differentiate \[\left( x \cos x \right)^x + \left( x \sin x \right)^{1/x}\] ?
Solution
\[\text{ Let y} = \left( x \cos x \right)^x + \left( x \sin x \right)^\frac{1}{x} \]
\[ \text{ Also, Let u } = \left( x \cos x \right)^x \text{ and v } = \left( x \sin x \right)^\frac{1}{x} \]
\[ \therefore y = u + v\]
\[ \Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} . . . \left( i \right)\]
\[\text{ Now, u }= \left( x \cos x \right)^x \]
\[ \Rightarrow \log u = \log \left( x \cos x \right)^x \]
\[ \Rightarrow \log u = x \log\left( x \cos x \right)\]
\[ \Rightarrow \log u = x\left[ \log x + \log \cos x \right]\]
\[ \Rightarrow \log u = x\log x + x\log \cos x\]
Differentiate both sides with respect to x,
\[\frac{1}{u}\frac{du}{dx} = \frac{d}{dx}\left( x \log x \right) + \frac{d}{dx}\left( x \log \cos x \right)\]
\[ \Rightarrow \frac{du}{dx} = u\left[ \left\{ \log x\frac{d}{dx}\left( x \right) + x\frac{d}{dx}\left( \log x \right) \right\} + \left\{ \log \cos x\frac{d}{dx}\left( x \right) + x\frac{d}{dx}\left( \log \cos x \right) \right\} \right]\]
\[ \Rightarrow \frac{du}{dx} = \left( x \cos x \right)^x \left[ \left( \log x\left( 1 \right) + x\left( \frac{1}{x} \right) \right) + \left\{ \log \cos x\left( 1 \right) + x\frac{1}{\cos x}\frac{d}{dx}\left( \cos x \right) \right\} \right]\]
\[ \Rightarrow \frac{du}{dx} = \left( x \cos x \right)^x \left[ \left( \log x + 1 \right) + \left\{ \log \cos x + \frac{x}{\cos x}\left( - \sin x \right) \right\} \right]\]
\[ \Rightarrow \frac{du}{dx} = \left( x \cos x \right)^x \left[ \left( 1 + \log x \right) + \left( \log \cos x - x \tan x \right) \right]\]
\[ \Rightarrow \frac{du}{dx} = \left( x \cos x \right)^x \left[ 1 - x \tan x + \left( \log x + \log \cos x \right) \right]\]
\[ \Rightarrow \frac{du}{dx} = \left( x \cos x \right)^x \left[ 1 - x \tan x + \log\left( x \cos x \right) \right] . . . \left( ii \right)\]
\[\text{ Again, v} = \left( x \sin x \right)^\frac{1}{x} \]
\[ \Rightarrow \log v = \log \left( x \sin x \right)^\frac{1}{x} \]
\[ \Rightarrow \log v = \frac{1}{x}\log\left( x \sin x \right)\]
\[ \Rightarrow \log v = \frac{1}{x}\left( \log x + \log \sin x \right)\]
\[ \Rightarrow \log v = \frac{1}{x}\log x + \frac{1}{x}\log \sin x\]
Differentiating both sides with respect to x,
\[\frac{1}{v}\frac{dv}{dx} = \frac{d}{dx}\left( \frac{1}{x}\log x \right) + \frac{d}{dx}\left[ \frac{1}{x}\log\left( \sin x \right) \right]\]
\[ \Rightarrow \frac{1}{v}\frac{dv}{dx} = \left[ \log x\frac{d}{dx}\left( \frac{1}{x} \right) + \frac{1}{x}\frac{d}{dx}\left( \log x \right) \right] + \left[ \log\left( \sin x \right)\frac{d}{dx}\left( \frac{1}{x} \right) + \frac{1}{x}\frac{d}{dx}\left\{ \log\left( \sin x \right) \right\} \right]\]
\[ \Rightarrow \frac{1}{v}\frac{dv}{dx} = \left[ \log x\left( - \frac{1}{x^2} \right) + \left( \frac{1}{x} \right)\left( \frac{1}{x} \right) \right] + \left[ \log\left( \sin x \right)\left( - \frac{1}{x^2} \right) + \frac{1}{x}\left( \frac{1}{\sin x} \right)\frac{d}{dx}\left( \sin x \right) \right]\]
\[ \Rightarrow \frac{1}{v}\frac{dv}{dx} = \frac{1}{x^2}\left( 1 - \log x \right) + \left[ - \frac{\log\left( \sin x \right)}{x^2} + \frac{1}{x \sin x}\left( \cos x \right) \right]\]
\[ \Rightarrow \frac{dv}{dx} = \left( x \sin x \right)^\frac{1}{x} \left[ \frac{1 - \log x}{x^2} + \frac{- \log\left( \sin x \right) + x \cot x}{x^2} \right]\]
\[ \Rightarrow \frac{dv}{dx} = \left( x \sin x \right)^\frac{1}{x} \left[ \frac{1 - \log x - \log\left( \sin x \right) + x \cot x}{x^2} \right]\]
\[ \Rightarrow \frac{dv}{dx} = \left( x \sin x \right)^\frac{1}{x} \left[ \frac{1 - \log\left( x\sin x \right) + x \cot x}{x^2} \right] . . . \left( iii \right)\]
\[\text{ From }\left( i \right), \left( ii \right)\text{ and } \left( iii \right), \text{ we obtain }\]
\[\frac{dy}{dx} = \left( x \cos x \right)^x \left[ 1 - x \tan x + \log\left( x \cos x \right) \right] + \left( x \sin x \right)^\frac{1}{x} \left[ \frac{x \cot x + 1 - \log\left( x \sin x \right)}{x^2} \right]\]
APPEARS IN
RELATED QUESTIONS
Differentiate the following functions from first principles \[e^\sqrt{2x}\].
Differentiate the following functions from first principles sin−1 (2x + 3) ?
Differentiate logx 3 ?
Differentiate \[\frac{3 x^2 \sin x}{\sqrt{7 - x^2}}\] ?
Differentiate \[\log \left( \cos x^2 \right)\] ?
Differentiate \[\log \sqrt{\frac{x - 1}{x + 1}}\] ?
If xy = 4, prove that \[x\left( \frac{dy}{dx} + y^2 \right) = 3 y\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{\sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{\sqrt{1 + x} + \sqrt{1 - x}}{2} \right\}, 0 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{\sin x}{1 + \cos x} \right), - \pi < x < \pi\] ?
Differentiate \[\cos^{- 1} \left( \frac{1 - x^{2n}}{1 + x^{2n}} \right), < x < \infty\] ?
If \[y = \sin^{- 1} \left( 6x\sqrt{1 - 9 x^2} \right), - \frac{1}{3\sqrt{2}} < x < \frac{1}{3\sqrt{2}}\] \[\frac{dy}{dx} \] ?
If \[xy = 1\] prove that \[\frac{dy}{dx} + y^2 = 0\] ?
If \[\sec \left( \frac{x + y}{x - y} \right) = a\] Prove that \[\frac{dy}{dx} = \frac{y}{x}\] ?
If \[y = x \sin \left( a + y \right)\] ,Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?
Differentiate \[x^{\cos^{- 1} x}\] ?
Differentiate \[\left( \log x \right)^{\cos x}\] ?
Differentiate \[\left( \log x \right)^{ \log x }\] ?
Find \[\frac{dy}{dx}\] \[y = e^x + {10}^x + x^x\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\log x} + \cos^2 \left( \frac{\pi}{4} \right)\] ?
If \[e^x + e^y = e^{x + y}\] , prove that
\[\frac{dy}{dx} + e^{y - x} = 0\] ?
If \[y = \sqrt{x + \sqrt{x + \sqrt{x + . . . to \infty ,}}}\] prove that \[\frac{dy}{dx} = \frac{1}{2 y - 1}\] ?
If \[x = e^{\cos 2 t} \text{ and y }= e^{\sin 2 t} ,\] prove that \[\frac{dy}{dx} = - \frac{y \log x}{x \log y}\] ?
If \[x = \left( t + \frac{1}{t} \right)^a , y = a^{t + \frac{1}{t}} , \text{ find } \frac{dy}{dx}\] ?
If \[x = 10 \left( t - \sin t \right), y = 12 \left( 1 - \cos t \right), \text { find } \frac{dy}{dx} .\] ?
Differentiate (log x)x with respect to log x ?
If \[f\left( 0 \right) = f\left( 1 \right) = 0, f'\left( 1 \right) = 2 \text { and y } = f \left( e^x \right) e^{f \left( x \right)}\] write the value of \[\frac{dy}{dx} \text{ at x } = 0\] ?
If \[y = \tan^{- 1} \left( \frac{1 - x}{1 + x} \right), \text{ find} \frac{dy}{dx}\] ?
If \[y = \log \sqrt{\tan x}, \text{ write } \frac{dy}{dx} \] ?
If f (x) = logx2 (log x), the `f' (x)` at x = e is ____________ .
If \[\sqrt{1 - x^6} + \sqrt{1 - y^6} = a^3 \left( x^3 - y^3 \right)\] then \[\frac{dy}{dx}\] is equal to ____________ .
If \[y = \log \sqrt{\tan x}\] then the value of \[\frac{dy}{dx}\text { at }x = \frac{\pi}{4}\] is given by __________ .
If \[y = \log \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] __________ .
If x = a cos θ, y = b sin θ, show that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?
If y = (sin−1 x)2, prove that (1 − x2)
\[\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?
If \[y = e^{\tan^{- 1} x}\] prove that (1 + x2)y2 + (2x − 1)y1 = 0 ?
If \[x = 3 \cos t - 2 \cos^3 t, y = 3\sin t - 2 \sin^3 t,\] find \[\frac{d^2 y}{d x^2} \] ?
If xy − loge y = 1 satisfies the equation \[x\left( y y_2 + y_1^2 \right) - y_2 + \lambda y y_1 = 0\]