Advertisements
Advertisements
Question
Differentiate \[\tan^{- 1} \left( \frac{\sin x}{1 + \cos x} \right), - \pi < x < \pi\] ?
Solution
\[\text{ Let }f\left( x \right) = \tan^{- 1} \left( \frac{\sin x}{1 + \cos x} \right)\]
This function is defined for all real numbers where cos x ≠ 1
\[f\left( x \right) = \tan^{- 1} \left( \frac{\sin x}{1 + \cos x} \right)\]
\[ \Rightarrow f\left( x \right) = \tan^{- 1} \left[ \frac{2 \sin\left( \frac{x}{2} \right)\cos\left( \frac{x}{2} \right)}{2 \cos^2 \left( \frac{x}{2} \right)} \right]\]
\[ \Rightarrow f\left( x \right) = \tan^{- 1} \left[ \tan\left( \frac{x}{2} \right) \right] = \frac{x}{2}\]
\[\text{ Thus}, f'\left( x \right) = \frac{d}{dx}\left( \frac{x}{2} \right) = \frac{1}{2}\]
APPEARS IN
RELATED QUESTIONS
Differentiate the following functions from first principles sin−1 (2x + 3) ?
Differentiate sin2 (2x + 1) ?
Differentiate \[\sqrt{\frac{1 + \sin x}{1 - \sin x}}\] ?
Differentiate \[\tan \left( e^{\sin x }\right)\] ?
Differentiate \[\log \left( 3x + 2 \right) - x^2 \log \left( 2x - 1 \right)\] ?
If \[y = \left( x - 1 \right) \log \left( x - 1 \right) - \left( x + 1 \right) \log \left( x + 1 \right)\] , prove that \[\frac{dy}{dc} = \log \left( \frac{x - 1}{1 + x} \right)\] ?
If \[y = e^x \cos x\] ,prove that \[\frac{dy}{dx} = \sqrt{2} e^x \cdot \cos \left( x + \frac{\pi}{4} \right)\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{\sin x + \cos x}{\sqrt{2}} \right\}, - \frac{3 \pi}{4} < x < \frac{\pi}{4}\] ?
Differentiate \[\sin^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?
Differentiate \[\cos^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{2^{x + 1} \cdot 3^x}{1 + \left( 36 \right)^x} \right\}\] with respect to x ?
If \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?
Differentiate \[\left( \log x \right)^x\] ?
If \[\left( \cos x \right)^y = \left( \tan y \right)^x\] , prove that \[\frac{dy}{dx} = \frac{\log \tan y + y \tan x}{ \log \cos x - x \sec y \ cosec\ y }\] ?
If \[y = \left( \sin x - \cos x \right)^{\sin x - \cos x} , \frac{\pi}{4} < x < \frac{3\pi}{4}, \text{ find} \frac{dy}{dx}\] ?
If \[y = \sqrt{\cos x + \sqrt{\cos x + \sqrt{\cos x + . . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sin x}{1 - 2 y}\] ?
If \[y = \sqrt{\tan x + \sqrt{\tan x + \sqrt{\tan x + . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sec^2 x}{2 y - 1}\] ?
\[y = \left( \sin x \right)^{\left( \sin x \right)^{\left( \sin x \right)^{. . . \infty}}} \],prove that \[\frac{y^2 \cot x}{\left( 1 - y \log \sin x \right)}\] ?
Find \[\frac{dy}{dx}\],when \[x = a e^\theta \left( \sin \theta - \cos \theta \right), y = a e^\theta \left( \sin \theta + \cos \theta \right)\] ?
Find \[\frac{dy}{dx}\] ,when \[x = \frac{e^t + e^{- t}}{2} \text{ and } y = \frac{e^t - e^{- t}}{2}\] ?
If \[x = a\sin2t\left( 1 + \cos2t \right) \text { and y } = b\cos2t\left( 1 - \cos2t \right)\] , show that at \[t = \frac{\pi}{4}, \frac{dy}{dx} = \frac{b}{a}\] ?
Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { if } 0 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{x - 1}{x + 1} \right)\] with respect to \[\sin^{- 1} \left( 3x - 4 x^3 \right), \text { if }- \frac{1}{2} < x < \frac{1}{2}\] ?
Let g (x) be the inverse of an invertible function f (x) which is derivable at x = 3. If f (3) = 9 and `f' (3) = 9`, write the value of `g' (9)`.
If f (x) is an even function, then write whether `f' (x)` is even or odd ?
If \[f\left( x \right) = \tan^{- 1} \sqrt{\frac{1 + \sin x}{1 - \sin x}}, 0 \leq x \leq \pi/2, \text{ then } f' \left( \pi/6 \right) \text{ is }\] _________ .
Find the second order derivatives of the following function ex sin 5x ?
If x = cos θ, y = sin3 θ, prove that \[y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 = 3 \sin^2 \theta\left( 5 \cos^2 \theta - 1 \right)\] ?
If \[y = e^{\tan^{- 1} x}\] prove that (1 + x2)y2 + (2x − 1)y1 = 0 ?
If y = cos−1 x, find \[\frac{d^2 y}{d x^2}\] in terms of y alone ?
If x = 4z2 + 5, y = 6z2 + 7z + 3, find \[\frac{d^2 y}{d x^2}\] ?
If x = a cos nt − b sin nt and \[\frac{d^2 x}{dt} = \lambda x\] then find the value of λ ?
If y = x + ex, find \[\frac{d^2 x}{d y^2}\] ?
If x = f(t) cos t − f' (t) sin t and y = f(t) sin t + f'(t) cos t, then\[\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2 =\]
If y = xn−1 log x then x2 y2 + (3 − 2n) xy1 is equal to
If y2 = ax2 + bx + c, then \[y^3 \frac{d^2 y}{d x^2}\] is
Differentiate `log [x+2+sqrt(x^2+4x+1)]`