English

If X = F(T) Cos T − F' (T) Sin T and Y = F(T) Sin T + F'(T) Cos T, Then ( D X D T ) 2 + ( D Y D T ) 2 = (A) F(T) − F''(T) - Mathematics

Advertisements
Advertisements

Question

If x = f(t) cos t − f' (t) sin t and y = f(t) sin t + f'(t) cos t, then\[\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2 =\]

 

Options

  •  f(t) − f''(t)

  • {f(t) − f'' (t)}2

  • {f(t) + f''(t)}2

  • none of these

MCQ

Solution

(c){f(t) + f''(t)}2

Here,

\[x = f\left( t \right)\cos t - f^{'} \left( t \right) \sin t \text { and y } = f\left( t \right) \sin t + f^{'} \left( t \right)\cos t\]

\[ \Rightarrow \frac{d x}{d t} = f^{'} \left( t \right)\cos t - f\left( t \right)\sin t - f^{''} \left( t \right)\sin t - f^{'} \left( t \right)\cos t \text { and } \frac{d y}{d t} = f^{'} \left( t \right) \sin t + f\left( t \right)\cos t + f^{''} \left( t \right)\cos t - f^{'} \left( t \right) \sin t\]

\[ \Rightarrow \frac{d x}{d t} = - f\left( t \right)\sin t - f^{''} \left( t \right)\sin t \text { and } \frac{d y}{d t} = f\left( t \right)\cos t + f^{''} \left( t \right)\cos t\]

\[\text { Thus }, \]

\[ \left( \frac{d x}{d t} \right)^2 + \left( \frac{d y}{d t} \right)^2 = \left\{ - f\left( t \right)\sin t - f^{''} \left( t \right)\sin t \right\}^2 + \left\{ f\left( t \right)\cos t + f^{''} \left( t \right)\cos t \right\}^2 \]

\[ = \left\{ f\left( t \right)\sin t + f^{''} \left( t \right)\sin t \right\}^2 + \left\{ f\left( t \right)\cos t + f^{''} \left( t \right)\cos t \right\}^2 \]

\[ = \sin^2 t \left\{ f\left( t \right) + f^{''} \left( t \right) \right\}^2 + \cos^2 t \left\{ f\left( t \right) + f^{''} \left( t \right) \right\}^2 \]

\[ = \left\{ f\left( t \right) + f^{''} \left( t \right) \right\}^2 \left( \sin^2 t + \cos^2 t \right)\]

\[ = \left\{ f\left( t \right) + f^{''} \left( t \right) \right\}^2\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Higher Order Derivatives - Exercise 12.3 [Page 24]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 12 Higher Order Derivatives
Exercise 12.3 | Q 21 | Page 24

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Differentiate \[\sqrt{\frac{a^2 - x^2}{a^2 + x^2}}\] ?


Differentiate \[\sqrt{\frac{1 + \sin x}{1 - \sin x}}\] ?


Differentiate \[\log \left( cosec x - \cot x \right)\] ?


Differentiate \[x \sin 2x + 5^x + k^k + \left( \tan^2 x \right)^3\] ?


Differentiate \[\frac{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}}{\sqrt{x^2 + 1} - \sqrt{x^2 - 1}}\] ?


Differentiate \[3 e^{- 3x} \log \left( 1 + x \right)\] ?


Differentiate \[\frac{x^2 \left( 1 - x^2 \right)}{\cos 2x}\] ?


Differentiate \[\cos \left( \log x \right)^2\] ?


 If \[y = \sqrt{x + 1} + \sqrt{x - 1}\] , prove that \[\sqrt{x^2 - 1}\frac{dy}{dx} = \frac{1}{2}y\] ?


If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\], prove that  \[2 x\frac{dy}{dx} = \sqrt{x} - \frac{1}{\sqrt{x}}\] ?


If \[y = e^x + e^{- x}\] prove that  \[\frac{dy}{dx} = \sqrt{y^2 - 4}\] ?


Differentiate \[\tan^{- 1} \left\{ \frac{x}{\sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?


If \[y = \cos^{- 1} \left\{ \frac{2x - 3 \sqrt{1 - x^2}}{\sqrt{13}} \right\}, \text{ find } \frac{dy}{dx}\] ?


Find  \[\frac{dy}{dx}\] in the following case \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] ?


Find  \[\frac{dy}{dx}\] in the following case \[x^5 + y^5 = 5 xy\] ?

 


If \[y \sqrt{x^2 + 1} = \log \left( \sqrt{x^2 + 1} - x \right)\] ,Show that \[\left( x^2 + 1 \right) \frac{dy}{dx} + xy + 1 = 0\] ?


Differentiate \[x^{\tan^{- 1} x }\]  ?


Differentiate \[x^\left( \sin x - \cos x \right) + \frac{x^2 - 1}{x^2 + 1}\] ?


Find \[\frac{dy}{dx}\]  \[y = x^x + \left( \sin x \right)^x\] ?


If \[x^{16} y^9 = \left( x^2 + y \right)^{17}\] ,prove that \[x\frac{dy}{dx} = 2 y\] ?


If \[e^{x + y} - x = 0\] ,prove that \[\frac{dy}{dx} = \frac{1 - x}{x}\] ?


If \[x = 10 \left( t - \sin t \right), y = 12 \left( 1 - \cos t \right), \text { find } \frac{dy}{dx} .\] ?

 


\[\text { If }x = \cos t\left( 3 - 2 \cos^2 t \right), y = \sin t\left( 3 - 2 \sin^2 t \right) \text { find the value of } \frac{dy}{dx}\text{ at }t = \frac{\pi}{4}\] ?


If \[y = \log \sqrt{\tan x}, \text{ write } \frac{dy}{dx} \] ?


The differential coefficient of f (log x) w.r.t. x, where f (x) = log x is ___________ .


If \[y = \left( 1 + \frac{1}{x} \right)^x , \text{ then} \frac{dy}{dx} =\] ____________ .


Let  \[\cup = \sin^{- 1} \left( \frac{2 x}{1 + x^2} \right) \text { and }V = \tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text { then } \frac{d \cup}{dV} =\] ____________ .


\[\frac{d}{dx} \left\{ \tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right) \right\} \text { equals }\] ______________ .


If \[\sin y = x \sin \left( a + y \right), \text { then }\frac{dy}{dx} \text { is}\] ____________ .


If \[f\left( x \right) = \sqrt{x^2 + 6x + 9}, \text { then } f'\left( x \right)\] is equal to ______________ .


If \[y = \sqrt{\sin x + y}, \text { then }\frac{dy}{dx} \text { equals }\] ______________ .


Find \[\frac{d^2 y}{d x^2}\] where \[y = \log \left( \frac{x^2}{e^2} \right)\] ?


If \[x = 3 \cos t - 2 \cos^3 t, y = 3\sin t - 2 \sin^3 t,\] find \[\frac{d^2 y}{d x^2} \] ?


\[\text { If y } = a \left\{ x + \sqrt{x^2 + 1} \right\}^n + b \left\{ x - \sqrt{x^2 + 1} \right\}^{- n} , \text { prove that }\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \]

Disclaimer: There is a misprint in the question,

\[\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0\] must be written instead of

\[\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \] ?


If y = x + ex, find \[\frac{d^2 x}{d y^2}\] ?


If y = a + bx2, a, b arbitrary constants, then

 


If \[f\left( x \right) = \frac{\sin^{- 1} x}{\sqrt{1 - x^2}}\] then (1 − x)2 '' (x) − xf(x) =

 


If \[y = \tan^{- 1} \left\{ \frac{\log_e \left( e/ x^2 \right)}{\log_e \left( e x^2 \right)} \right\} + \tan^{- 1} \left( \frac{3 + 2 \log_e x}{1 - 6 \log_e x} \right)\], then \[\frac{d^2 y}{d x^2} =\]

 


Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right) w . r . t . \sin^{- 1} \frac{2x}{1 + x^2},\]tan-11+x2-1x w.r.t. sin-12x1+x2, if x ∈ (–1, 1) .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×