Advertisements
Advertisements
Question
If \[y \sqrt{x^2 + 1} = \log \left( \sqrt{x^2 + 1} - x \right)\] ,Show that \[\left( x^2 + 1 \right) \frac{dy}{dx} + xy + 1 = 0\] ?
Solution
\[\text{ We have, y} \sqrt{x^2 + 1} = \log\left( \sqrt{x^2 + 1} - x \right)\]
Differentiating with respect to x, we get,
\[\Rightarrow \frac{d}{dx}\left( y\sqrt{x^2 + 1} \right) = \frac{d}{dx}\log\left( \sqrt{x^2 + 1} - x \right) \left[ \text{ using product rule and chain rule } \right]\]
\[ \Rightarrow y\frac{d}{dx}\left( \sqrt{x^2 + 1} \right) + \sqrt{x^2 + 1}\frac{dy}{dx} = \frac{1}{\left( \sqrt{x^2 + 1} - x \right)} \times \frac{d}{dx}\left( \sqrt{x^2 + 1} - x \right)\]
\[ \Rightarrow \frac{y}{2\sqrt{x^2 + 1}} \times \frac{d}{dx}\left( x^2 + 1 \right) + \sqrt{x^2 + 1}\frac{dy}{dx} = \frac{1}{\left( \sqrt{x^2 + 1} - x \right)} \times \left[ \frac{1}{2\sqrt{x^2 + 1}}\frac{d}{dx}\left( x^2 + 1 \right) - 1 \right]\]
\[ \Rightarrow \frac{2xy}{2\sqrt{x^2 + 1}} + \sqrt{x^2 + 1}\frac{dy}{dx} = \frac{1}{\left( \sqrt{x^2 + 1} - x \right)}\left[ \frac{2x}{2\sqrt{x^2 + 1}} - 1 \right]\]
\[ \Rightarrow \sqrt{x^2 + 1}\frac{dy}{dx} = \left[ \frac{1}{\sqrt{x^2 + 1} - x} \right]\left[ \frac{x - \sqrt{x^2 + 1}}{\sqrt{x^2 + 1}} \right] - \frac{xy}{\sqrt{x^2 + 1}}\]
\[ \Rightarrow \sqrt{x^2 + 1}\frac{dy}{dx} = \frac{- 1}{\sqrt{x^2 + 1}} - \frac{xy}{\sqrt{x^2 + 1}}\]
\[ \Rightarrow \sqrt{x^2 + 1}\frac{dy}{dx} = \frac{- \left( 1 + xy \right)}{\sqrt{x^2 + 1}}\]
\[ \Rightarrow \left( x^2 + 1 \right)\frac{dy}{dx} = - \left( 1 + xy \right)\]
\[ \Rightarrow \left( x^2 + 1 \right)\frac{dy}{dx} + 1 + xy = 0\]
APPEARS IN
RELATED QUESTIONS
If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum, when the angle between them is 60º.
Differentiate the following functions from first principles log cosec x ?
Differentiate sin (log x) ?
Differentiate sin2 (2x + 1) ?
Differentiate tan 5x° ?
Differentiate \[\sqrt{\frac{1 + \sin x}{1 - \sin x}}\] ?
Differentiate \[x \sin 2x + 5^x + k^k + \left( \tan^2 x \right)^3\] ?
Differentiate \[\frac{3 x^2 \sin x}{\sqrt{7 - x^2}}\] ?
Differentiate \[\frac{e^x \sin x}{\left( x^2 + 2 \right)^3}\] ?
If \[y = \left( x - 1 \right) \log \left( x - 1 \right) - \left( x + 1 \right) \log \left( x + 1 \right)\] , prove that \[\frac{dy}{dc} = \log \left( \frac{x - 1}{1 + x} \right)\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{1 + \sqrt{1 - x^2}} \right\}, - 1 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{2 a^x}{1 - a^{2x}} \right), a > 1, - \infty < x < 0\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{\sqrt{1 + x} + \sqrt{1 - x}}{2} \right\}, 0 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + b \tan x}{b - a \tan x} \right)\] ?
Differentiate
\[\tan^{- 1} \left( \frac{\cos x + \sin x}{\cos x - \sin x} \right), \frac{\pi}{4} < x < \frac{\pi}{4}\] ?
Find \[\frac{dy}{dx}\] in the following case \[\tan^{- 1} \left( x^2 + y^2 \right) = a\] ?
If \[x y^2 = 1,\] prove that \[2\frac{dy}{dx} + y^3 = 0\] ?
If \[\log \sqrt{x^2 + y^2} = \tan^{- 1} \left( \frac{y}{x} \right)\] Prove that \[\frac{dy}{dx} = \frac{x + y}{x - y}\] ?
If \[\cos y = x \cos \left( a + y \right), \text{ with } \cos a \neq \pm 1, \text{ prove that } \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\] ?
Find \[\frac{dy}{dx}\] ,When \[x = e^\theta \left( \theta + \frac{1}{\theta} \right) \text{ and } y = e^{- \theta} \left( \theta - \frac{1}{\theta} \right)\] ?
If \[x = a \left( \theta - \sin \theta \right) and, y = a \left( 1 + \cos \theta \right), \text { find } \frac{dy}{dx} \text{ at }\theta = \frac{\pi}{3} \] ?
Write the derivative of sinx with respect to cos x ?
Differentiate (log x)x with respect to log x ?
Differentiate \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\]\[x \in \left( 0, 1 \right)\] ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right), \text { if }- \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?
If \[f'\left( 1 \right) = 2 \text { and y } = f \left( \log_e x \right), \text { find} \frac{dy}{dx} \text { at }x = e\] ?
For the curve \[\sqrt{x} + \sqrt{y} = 1, \frac{dy}{dx}\text { at } \left( 1/4, 1/4 \right)\text { is }\] _____________ .
Let \[\cup = \sin^{- 1} \left( \frac{2 x}{1 + x^2} \right) \text { and }V = \tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text { then } \frac{d \cup}{dV} =\] ____________ .
If y = x + tan x, show that \[\cos^2 x\frac{d^2 y}{d x^2} - 2y + 2x = 0\] ?
If x = a sec θ, y = b tan θ, prove that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?
If x = a cos θ, y = b sin θ, show that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?
If y = ex (sin x + cos x) prove that \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\] ?
\[\text { If x } = a \sin t - b \cos t, y = a \cos t + b \sin t, \text { prove that } \frac{d^2 y}{d x^2} = - \frac{x^2 + y^2}{y^3} \] ?
If y = a sin mx + b cos mx, then \[\frac{d^2 y}{d x^2}\] is equal to
If x = f(t) and y = g(t), then \[\frac{d^2 y}{d x^2}\] is equal to
If xy − loge y = 1 satisfies the equation \[x\left( y y_2 + y_1^2 \right) - y_2 + \lambda y y_1 = 0\]
If x = sin t and y = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] .