Advertisements
Advertisements
Question
Differentiate \[\frac{e^x \sin x}{\left( x^2 + 2 \right)^3}\] ?
Solution
\[\text{Let } y = \frac{e^x \sin x}{\left( x^2 + 2 \right)^3}\]
Differentiate it with respect to x we get,
\[\frac{d y}{d x} = \frac{\left( x^2 + 2 \right)^3 \frac{d}{dx}\left( e^x \sin x \right) - e^x \sin x\frac{d}{dx} \left( x^2 + 2 \right)^3}{\left[ \left( x^2 + 2 \right)^3 \right]^2} \left[ \text{Using quotient rule} \right]\]
\[ = \frac{\left( x^2 + 2 \right)^3 \left[ e^x \cos x + \sin x e^x \right] - e^x \sin x 3 \left( x^2 + 2 \right)^2 \left( 2x \right)}{\left( x^2 + 2 \right)^6} \left[ \text{Using product rule} \right]\]
\[ = \frac{\left( x^2 + 2 \right)^3 \left[ e^x \cos x + e^x \sin x \right] - 6x e^x \sin x \left( x^2 + 2 \right)^2}{\left( x^2 + 2 \right)^6}\]
\[ = \frac{\left( x^2 + 2 \right)^2 \left[ \left( x^2 + 2 \right)\left( e^x \cos x + e^x \sin x \right) - 6x e^x \sin x \right]}{\left( x^2 + 2 \right)^6}\]
\[ = \frac{\left( x^2 + 2 \right)\left( e^x \cos x + e^x \sin x \right) - 6x e^x \sin x}{\left( x^2 + 2 \right)^4}\]
\[ = \frac{e^x \sin x + e^x \cos x}{\left( x^2 + 2 \right)^3} - \frac{6x e^x \sin x}{\left( x^2 + 2 \right)^4}\]
\[So, \frac{d y}{d x} = \frac{e^x \sin x + e^x \cos x}{\left( x^2 + 2 \right)^3} - \frac{6x e^x \sin x}{\left( x^2 + 2 \right)^4}\]
APPEARS IN
RELATED QUESTIONS
Differentiate \[\log \left( \tan^{- 1} x \right)\]?
Differentiate \[3 e^{- 3x} \log \left( 1 + x \right)\] ?
If \[y = \frac{x}{x + 2}\] , prove tha \[x\frac{dy}{dx} = \left( 1 - y \right) y\] ?
If xy = 4, prove that \[x\left( \frac{dy}{dx} + y^2 \right) = 3 y\] ?
Differentiate \[\sin^{- 1} \left( 2 x^2 - 1 \right), 0 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{\sqrt{x} + \sqrt{a}}{1 - \sqrt{xa}} \right)\] ?
If \[y = se c^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right), x > 0 . \text{ Find} \frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\] in the following case \[xy = c^2\] ?
Find \[\frac{dy}{dx}\] in the following case \[\tan^{- 1} \left( x^2 + y^2 \right) = a\] ?
If \[\sqrt{1 - x^2} + \sqrt{1 - y^2} = a \left( x - y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sqrt{1 - y^2}}{1 - x^2}\] ?
If \[y = x \sin y\] , Prove that \[\frac{dy}{dx} = \frac{\sin y}{\left( 1 - x \cos y \right)}\] ?
Differentiate \[x^{1/x}\] with respect to x.
Differentiate \[\left( \sin^{- 1} x \right)^x\] ?
find \[\frac{dy}{dx}\] \[y = \frac{\left( x^2 - 1 \right)^3 \left( 2x - 1 \right)}{\sqrt{\left( x - 3 \right) \left( 4x - 1 \right)}}\] ?
Find \[\frac{dy}{dx}\] \[y = \sin x \sin 2x \sin 3x \sin 4x\] ?
If \[x^y \cdot y^x = 1\] , prove that \[\frac{dy}{dx} = - \frac{y \left( y + x \log y \right)}{x \left( y \log x + x \right)}\] ?
If \[x^m y^n = 1\] , prove that \[\frac{dy}{dx} = - \frac{my}{nx}\] ?
If \[x = a \left( \frac{1 + t^2}{1 - t^2} \right) \text { and y } = \frac{2t}{1 - t^2}, \text { find } \frac{dy}{dx}\] ?
If \[x = 10 \left( t - \sin t \right), y = 12 \left( 1 - \cos t \right), \text { find } \frac{dy}{dx} .\] ?
\[\text { If }x = \cos t\left( 3 - 2 \cos^2 t \right), y = \sin t\left( 3 - 2 \sin^2 t \right) \text { find the value of } \frac{dy}{dx}\text{ at }t = \frac{\pi}{4}\] ?
If \[x = \frac{1 + \log t}{t^2}, y = \frac{3 + 2\log t}{t}, \text { find } \frac{dy}{dx}\] ?
Differentiate log (1 + x2) with respect to tan−1 x ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( \frac{1}{\sqrt{2}}, 1 \right)\] ?
Differentiate \[\sin^{- 1} \left( 2 ax \sqrt{1 - a^2 x^2} \right)\] with respect to \[\sqrt{1 - a^2 x^2}, \text{ if }-\frac{1}{\sqrt{2}} < ax < \frac{1}{\sqrt{2}}\] ?
If \[f'\left( 1 \right) = 2 \text { and y } = f \left( \log_e x \right), \text { find} \frac{dy}{dx} \text { at }x = e\] ?
If \[- \frac{\pi}{2} < x < 0 \text{ and y } = \tan^{- 1} \sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}, \text{ find } \frac{dy}{dx}\] ?
The differential coefficient of f (log x) w.r.t. x, where f (x) = log x is ___________ .
If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] _____________ .
If x = sin t, y = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?
If \[y = e^{\tan^{- 1} x}\] prove that (1 + x2)y2 + (2x − 1)y1 = 0 ?
If \[y = e^{2x} \left( ax + b \right)\] show that \[y_2 - 4 y_1 + 4y = 0\] ?
If y = ex (sin x + cos x) prove that \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\] ?
If x = a cos nt − b sin nt and \[\frac{d^2 x}{dt} = \lambda x\] then find the value of λ ?
If y = axn+1 + bx−n, then \[x^2 \frac{d^2 y}{d x^2} =\]
If \[f\left( x \right) = \frac{\sin^{- 1} x}{\sqrt{1 - x^2}}\] then (1 − x)2 f '' (x) − xf(x) =
If x = sin t and y = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] .