English

Differentiate Sin − 1 ( 2 a X √ 1 − a 2 X 2 ) with Respect to √ 1 a 2 X 2 , I F − 1 √ 2 < a X < 1 √ 2 ? - Mathematics

Advertisements
Advertisements

Question

Differentiate \[\sin^{- 1} \left( 2 ax \sqrt{1 - a^2 x^2} \right)\] with respect to \[\sqrt{1 - a^2 x^2}, \text{ if }-\frac{1}{\sqrt{2}} < ax < \frac{1}{\sqrt{2}}\] ?

Sum

Solution

\[\text { Let, u }= \sin^{- 1} \left( 2ax\sqrt{1 - a^2 x^2} \right)\]

\[\text { Put ax } = \sin\theta \Rightarrow \theta = \sin^{- 1} \left( ax \right)\]

\[ \therefore u = \sin^{- 1} \left( 2\sin\theta\sqrt{1 - \sin^2 \theta} \right)\]

\[ \Rightarrow u = \sin^{- 1} \left( 2 \sin\theta\cos\theta \right)\]

\[ \Rightarrow u = \sin^{- 1} \left( \sin2\theta \right) . . . \left( i \right)\]

\[\text { And }\]

\[\text { Let,} \]

\[ v = \sqrt{1 - a^2 x^2}\]

\[\text { Differentiating it with respect to } x, \]

\[\frac{dv}{dx} = \frac{1}{2\sqrt{1 - a^2 x^2}} \times \frac{d}{dx}\left( 1 - a^2 x^2 \right) \]

\[ \Rightarrow \frac{dv}{dx} = \left( \frac{0 - 2 a^2 x}{2\sqrt{1 - a^2 x^2}} \right) \]

\[ \Rightarrow \frac{dv}{dx} = \frac{- a^2 x}{\sqrt{1 - a^2 x^2}} . . . \left( ii \right)\]

\[\text { Here }, \]

\[ - \frac{1}{\sqrt{2}} < ax < \frac{1}{\sqrt{2}}\]

\[ \Rightarrow - \frac{1}{\sqrt{2}} < \sin\theta < \frac{1}{\sqrt{2}}\]

\[ \Rightarrow - \frac{\pi}{4} < \theta < \frac{\pi}{4}\]

\[\text { So, from equation }\left( i \right), \]

\[u = 2\theta \left[ \text { Since }, \sin^{- 1} \left( \sin\theta \right) = \theta,\text { if } \theta \in \left[ - \frac{\pi}{2}, \frac{\pi}{2} \right] \right]\]

\[ \Rightarrow u = 2 \sin^{- 1} x\]

Differentiating it with respect to x,

\[\frac{du}{dx} = 2 \times \frac{1}{\sqrt{1 - \left( ax \right)^2}}\frac{d}{dx}\left( ax \right) \]

\[ \Rightarrow \frac{du}{dx} = \frac{2}{1 - a^2 x^2}\left( a \right) \]

\[ \Rightarrow \frac{du}{dx} = \frac{2a}{1 - a^2 x^2} . . . \left( iii \right) \]

\[\text { Dividing equation } \left( iii \right) by \left( ii \right), \]

\[\frac{\frac{du}{dx}}{\frac{dv}{dx}} = \left( \frac{2a}{\sqrt{1 - a^2 x^2}} \right)\left( \frac{\sqrt{1 - a^2 x^2}}{- a^2 x} \right)\]

\[ \therefore \frac{du}{dv} = - \frac{2}{ax}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Differentiation - Exercise 11.08 [Page 113]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 11 Differentiation
Exercise 11.08 | Q 19 | Page 113

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Differentiate the following functions from first principles sin−1 (2x + 3) ?


Differentiate tan2 x ?


Differentiate \[\sqrt{\frac{1 + \sin x}{1 - \sin x}}\] ?


Differentiate \[\frac{2^x \cos x}{\left( x^2 + 3 \right)^2}\] ?


Differentiate \[3 e^{- 3x} \log \left( 1 + x \right)\] ?


Differentiate \[\tan^{- 1} \left( \frac{2^{x + 1}}{1 - 4^x} \right), - \infty < x < 0\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{\sqrt{1 + x} + \sqrt{1 - x}}{2} \right\}, 0 < x < 1\] ?


Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + a^2 x^2} - 1}{ax} \right), x \neq 0\] ?


 Differentiate \[\tan^{- 1} \left( \frac{x - a}{x + a} \right)\] ?


Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] with respect to x.


Find  \[\frac{dy}{dx}\] in the following case \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] ?


If \[x \sqrt{1 + y} + y \sqrt{1 + x} = 0\] , prove that \[\left( 1 + x \right)^2 \frac{dy}{dx} + 1 = 0\]  ?


If \[y = x \sin y\] , Prove that \[\frac{dy}{dx} = \frac{\sin y}{\left( 1 - x \cos y \right)}\] ?


If \[e^x + e^y = e^{x + y} , \text{ prove that } \frac{dy}{dx} = - \frac{e^x \left( e^y - 1 \right)}{e^y \left( e^x - 1 \right)} or \frac{dy}{dx} + e^{y - x} = 0\] ?


Differentiate \[\left( 1 + \cos x \right)^x\] ?


If \[y = x \sin \left( a + y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?

 


If \[y = \left( \cos x \right)^{\left( \cos x \right)^{\left( \cos x \right) . . . \infty}}\],prove that \[\frac{dy}{dx} = - \frac{y^2 \tan x}{\left( 1 - y \log \cos x \right)}\]?

 


Find \[\frac{dy}{dx}\] , when \[x = b   \sin^2   \theta  \text{ and }  y = a   \cos^2   \theta\] ?


Find \[\frac{dy}{dx}\] ,when \[x = \frac{e^t + e^{- t}}{2} \text{ and } y = \frac{e^t - e^{- t}}{2}\] ?


If  \[x = 2 \cos \theta - \cos 2 \theta \text{ and y} = 2 \sin \theta - \sin 2 \theta\], prove that \[\frac{dy}{dx} = \tan \left( \frac{3 \theta}{2} \right)\] ?


If \[y = \tan^{- 1} \left( \frac{1 - x}{1 + x} \right), \text{ find} \frac{dy}{dx}\]  ?


If \[y = \sec^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right)\] then write the value of \[\frac{dy}{dx} \] ?


If \[f\left( x \right) = \log \left\{ \frac{u \left( x \right)}{v \left( x \right)} \right\}, u \left( 1 \right) = v \left( 1 \right) \text{ and }u' \left( 1 \right) = v' \left( 1 \right) = 2\] , then find the value of `f' (1)` ?


If \[y = \left( 1 + \frac{1}{x} \right)^x , \text{ then} \frac{dy}{dx} =\] ____________ .


If \[3 \sin \left( xy \right) + 4 \cos \left( xy \right) = 5, \text { then } \frac{dy}{dx} =\] _____________ .


Find the second order derivatives of the following function e6x cos 3x  ?


If y = x3 log x, prove that \[\frac{d^4 y}{d x^4} = \frac{6}{x}\] ?


If x = a (θ − sin θ), y = a (1 + cos θ) prove that, find \[\frac{d^2 y}{d x^2}\] ?


If y = tan−1 x, show that \[\left( 1 + x^2 \right) \frac{d^2 y}{d x^2} + 2x\frac{dy}{dx} = 0\] ?


If y = (tan−1 x)2, then prove that (1 + x2)2 y2 + 2x(1 + x2)y1 = 2 ?


If y = 3 e2x + 2 e3x, prove that  \[\frac{d^2 y}{d x^2} - 5\frac{dy}{dx} + 6y = 0\] ?


\[\text { If y } = x^n \left\{ a \cos\left( \log x \right) + b \sin\left( \log x \right) \right\}, \text { prove that } x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)x\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0 \] Disclaimer: There is a misprint in the question. It must be 

\[x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)x\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0\] instead of 1

\[x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0\] ?


If \[y = \left| \log_e x \right|\] find\[\frac{d^2 y}{d x^2}\] ?


If \[f\left( x \right) = \frac{\sin^{- 1} x}{\sqrt{1 - x^2}}\] then (1 − x)2 '' (x) − xf(x) =

 


If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =


Differentiate sin(log sin x) ?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×