Advertisements
Advertisements
प्रश्न
Differentiate \[\sin^{- 1} \left( 2 ax \sqrt{1 - a^2 x^2} \right)\] with respect to \[\sqrt{1 - a^2 x^2}, \text{ if }-\frac{1}{\sqrt{2}} < ax < \frac{1}{\sqrt{2}}\] ?
उत्तर
\[\text { Let, u }= \sin^{- 1} \left( 2ax\sqrt{1 - a^2 x^2} \right)\]
\[\text { Put ax } = \sin\theta \Rightarrow \theta = \sin^{- 1} \left( ax \right)\]
\[ \therefore u = \sin^{- 1} \left( 2\sin\theta\sqrt{1 - \sin^2 \theta} \right)\]
\[ \Rightarrow u = \sin^{- 1} \left( 2 \sin\theta\cos\theta \right)\]
\[ \Rightarrow u = \sin^{- 1} \left( \sin2\theta \right) . . . \left( i \right)\]
\[\text { And }\]
\[\text { Let,} \]
\[ v = \sqrt{1 - a^2 x^2}\]
\[\text { Differentiating it with respect to } x, \]
\[\frac{dv}{dx} = \frac{1}{2\sqrt{1 - a^2 x^2}} \times \frac{d}{dx}\left( 1 - a^2 x^2 \right) \]
\[ \Rightarrow \frac{dv}{dx} = \left( \frac{0 - 2 a^2 x}{2\sqrt{1 - a^2 x^2}} \right) \]
\[ \Rightarrow \frac{dv}{dx} = \frac{- a^2 x}{\sqrt{1 - a^2 x^2}} . . . \left( ii \right)\]
\[\text { Here }, \]
\[ - \frac{1}{\sqrt{2}} < ax < \frac{1}{\sqrt{2}}\]
\[ \Rightarrow - \frac{1}{\sqrt{2}} < \sin\theta < \frac{1}{\sqrt{2}}\]
\[ \Rightarrow - \frac{\pi}{4} < \theta < \frac{\pi}{4}\]
\[\text { So, from equation }\left( i \right), \]
\[u = 2\theta \left[ \text { Since }, \sin^{- 1} \left( \sin\theta \right) = \theta,\text { if } \theta \in \left[ - \frac{\pi}{2}, \frac{\pi}{2} \right] \right]\]
\[ \Rightarrow u = 2 \sin^{- 1} x\]
Differentiating it with respect to x,
\[\frac{du}{dx} = 2 \times \frac{1}{\sqrt{1 - \left( ax \right)^2}}\frac{d}{dx}\left( ax \right) \]
\[ \Rightarrow \frac{du}{dx} = \frac{2}{1 - a^2 x^2}\left( a \right) \]
\[ \Rightarrow \frac{du}{dx} = \frac{2a}{1 - a^2 x^2} . . . \left( iii \right) \]
\[\text { Dividing equation } \left( iii \right) by \left( ii \right), \]
\[\frac{\frac{du}{dx}}{\frac{dv}{dx}} = \left( \frac{2a}{\sqrt{1 - a^2 x^2}} \right)\left( \frac{\sqrt{1 - a^2 x^2}}{- a^2 x} \right)\]
\[ \therefore \frac{du}{dv} = - \frac{2}{ax}\]
APPEARS IN
संबंधित प्रश्न
If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum, when the angle between them is 60º.
Differentiate tan2 x ?
Differentiate \[3^{x^2 + 2x}\] ?
Differentiate \[\frac{e^{2x} + e^{- 2x}}{e^{2x} - e^{- 2x}}\] ?
Differentiate \[x \sin 2x + 5^x + k^k + \left( \tan^2 x \right)^3\] ?
If \[y = \log \left\{ \sqrt{x - 1} - \sqrt{x + 1} \right\}\] ,show that \[\frac{dy}{dx} = \frac{- 1}{2\sqrt{x^2 - 1}}\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{\sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?
If \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), 0 < x < 1,\] prove that \[\frac{dy}{dx} = \frac{4}{1 + x^2}\] ?
If \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, 0 < x < \frac{1}{2}, \text{ find } \frac{dy}{dx} .\] ?
Find \[\frac{dy}{dx}\] in the following case: \[y^3 - 3x y^2 = x^3 + 3 x^2 y\] ?
If \[\cos y = x \cos \left( a + y \right), \text{ with } \cos a \neq \pm 1, \text{ prove that } \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\] ?
If `y=(sinx)^x + sin^-1 sqrtx "then find" dy/dx`
Find \[\frac{dy}{dx}\] \[y = x^{\cos x} + \left( \sin x \right)^{\tan x}\] ?
If \[x^{16} y^9 = \left( x^2 + y \right)^{17}\] ,prove that \[x\frac{dy}{dx} = 2 y\] ?
If \[x^x + y^x = 1\], prove that \[\frac{dy}{dx} = - \left\{ \frac{x^x \left( 1 + \log x \right) + y^x \cdot \log y}{x \cdot y^\left( x - 1 \right)} \right\}\] ?
If \[x^y \cdot y^x = 1\] , prove that \[\frac{dy}{dx} = - \frac{y \left( y + x \log y \right)}{x \left( y \log x + x \right)}\] ?
If \[x^y + y^x = \left( x + y \right)^{x + y} , \text{ find } \frac{dy}{dx}\] ?
If \[x^m y^n = 1\] , prove that \[\frac{dy}{dx} = - \frac{my}{nx}\] ?
If \[x = \frac{1 + \log t}{t^2}, y = \frac{3 + 2\log t}{t}, \text { find } \frac{dy}{dx}\] ?
Differentiate \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\]\[x \in \left( 0, 1 \right)\] ?
Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2}, - \frac{1}{2 \sqrt{2}} \right)\] ?
If \[y = \log_a x, \text{ find } \frac{dy}{dx} \] ?
If \[x^y = e^{x - y} ,\text{ then } \frac{dy}{dx}\] is __________ .
If \[x = a \cos^3 \theta, y = a \sin^3 \theta, \text { then } \sqrt{1 + \left( \frac{dy}{dx} \right)^2} =\] ____________ .
If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] _____________ .
The derivative of \[\sec^{- 1} \left( \frac{1}{2 x^2 + 1} \right) \text { w . r . t }. \sqrt{1 + 3 x} \text { at } x = - 1/3\]
If x = cos θ, y = sin3 θ, prove that \[y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 = 3 \sin^2 \theta\left( 5 \cos^2 \theta - 1 \right)\] ?
If \[y = e^{\tan^{- 1} x}\] prove that (1 + x2)y2 + (2x − 1)y1 = 0 ?
If log y = tan−1 x, show that (1 + x2)y2 + (2x − 1) y1 = 0 ?
\[\text { If x } = a\left( \cos t + t \sin t \right) \text { and y} = a\left( \sin t - t \cos t \right),\text { then find the value of } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?
\[\text { If x } = a \sin t - b \cos t, y = a \cos t + b \sin t, \text { prove that } \frac{d^2 y}{d x^2} = - \frac{x^2 + y^2}{y^3} \] ?
\[\text { If }y = A e^{- kt} \cos\left( pt + c \right), \text { prove that } \frac{d^2 y}{d t^2} + 2k\frac{d y}{d t} + n^2 y = 0, \text { where } n^2 = p^2 + k^2 \] ?
\[\text { If y } = x^n \left\{ a \cos\left( \log x \right) + b \sin\left( \log x \right) \right\}, \text { prove that } x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)x\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0 \] Disclaimer: There is a misprint in the question. It must be
\[x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)x\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0\] instead of 1
\[x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0\] ?
If y = x + ex, find \[\frac{d^2 x}{d y^2}\] ?
If f(x) = (cos x + i sin x) (cos 2x + i sin 2x) (cos 3x + i sin 3x) ...... (cos nx + i sin nx) and f(1) = 1, then f'' (1) is equal to
If y = (sin−1 x)2, then (1 − x2)y2 is equal to
Differentiate `log [x+2+sqrt(x^2+4x+1)]`