मराठी

Find D Y D X Y = X Cos X + ( Sin X ) Tan X ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find \[\frac{dy}{dx}\] \[y = x^{\cos x} + \left( \sin x \right)^{\tan x}\] ?

बेरीज

उत्तर

\[ \text{ We have, y} = x^{\cos x} + \left( \sin x \right)^{\tan x} \]

\[ \Rightarrow y = e^{\log x^{\cos x}} + e^{\log \left( \sin x \right)^{\tan x}} \]

\[ \Rightarrow y = e^{\cos x \log x} + e^{\tan x \log \sin x}\]

Differentiating with respect to x using chain rule,

\[\frac{dy}{dx} = \frac{d}{dx}\left( e^{\cos x \log x} \right) + \frac{d}{dx}\left( e^{\tan x \log \sin x} \right)\]

\[ = e^{\cos x \log x} \frac{d}{dx}\left( \cos x \log x \right) + e^{\tan x \log \sin x} \frac{d}{dx}\left( \tan x \log \sin x \right)\]

\[ = e^{\log x^{\cos x}} \left[ \cos x\frac{d}{dx}\left( \log x \right) + \log x\frac{d}{dx}\left( \cos x \right) \right] + e^{\log \left( \sin x \right)^{ \tan x}} \left[ \tan x\frac{d}{dx}\log \sin x + \log \sin x\frac{d}{dx}\left( \tan x \right) \right] \]

\[ = x^{ \cos x }\left[ \cos x\left( \frac{1}{x} \right) + \log x\left( - \sin x \right) \right] + \left( \sin x \right)^{\tan x } \left[ \tan x\left( \frac{1}{\sin x} \right)\frac{d}{dx}\left( \sin x \right) + \log \sin x\left( \sec^2 x \right) \right]\]

\[ = x^{\cos x} \left[ \frac{\cos x}{x} - \sin x \log x \right] + \left( \sin x \right)^{\tan x} \left[ \tan x\left( \frac{1}{\sin x} \right)\left( \cos x \right) + \sec^2 x \log \sin x \right]\]

\[ = x^{\cos x} \left[ \frac{\cos x}{x} - \sin x \log x \right] + \left( \sin x \right)^{\tan x} \left[ 1 + \sec^2 x \log \sin x \right]\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Differentiation - Exercise 11.05 [पृष्ठ ८९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 11 Differentiation
Exercise 11.05 | Q 29.1 | पृष्ठ ८९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Differentiate the following functions from first principles sin−1 (2x + 3) ?


Differentiate \[e^{\sin} \sqrt{x}\] ?


Differentiate \[\sqrt{\frac{a^2 - x^2}{a^2 + x^2}}\] ?


Differentiate \[3^{x \log x}\] ?


Differentiate \[e^{3 x} \cos 2x\] ?


Differentiate \[\frac{x^2 \left( 1 - x^2 \right)}{\cos 2x}\] ?


Differentiate \[\cos \left( \log x \right)^2\] ?


If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\], prove that  \[2 x\frac{dy}{dx} = \sqrt{x} - \frac{1}{\sqrt{x}}\] ?


If \[y = \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}\] ,  prove that \[\left( 1 - x^2 \right) \frac{dy}{dx} = x + \frac{y}{x}\] ?


Differentiate \[\tan^{- 1} \left( \frac{\sin x}{1 + \cos x} \right), - \pi < x < \pi\] ?


If \[y = \sin^{- 1} \left( \frac{x}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right), 0 < x < \infty\] prove that  \[\frac{dy}{dx} = \frac{2}{1 + x^2} \] ?

 


Find  \[\frac{dy}{dx}\] in the following case \[\left( x + y \right)^2 = 2axy\] ?

 


Find  \[\frac{dy}{dx}\] in the following case \[e^{x - y} = \log \left( \frac{x}{y} \right)\] ?

 


Find  \[\frac{dy}{dx}\] in the following case \[\sin xy + \cos \left( x + y \right) = 1\] ?

 


If \[y \sqrt{1 - x^2} + x \sqrt{1 - y^2} = 1\] ,prove that \[\frac{dy}{dx} = - \sqrt{\frac{1 - y^2}{1 - x^2}}\] ?


If \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?


If \[e^x + e^y = e^{x + y} , \text{ prove that } \frac{dy}{dx} = - \frac{e^x \left( e^y - 1 \right)}{e^y \left( e^x - 1 \right)} or \frac{dy}{dx} + e^{y - x} = 0\] ?


If \[\cos y = x \cos \left( a + y \right), \text{ with } \cos a \neq \pm 1, \text{ prove that } \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\] ?


Find  \[\frac{dy}{dx}\]  \[y = \frac{e^{ax} \cdot \sec x \cdot \log x}{\sqrt{1 - 2x}}\] ?

 


Find  \[\frac{dy}{dx}\] \[y = \sin x \sin 2x \sin 3x \sin 4x\] ?

 


If \[x^{13} y^7 = \left( x + y \right)^{20}\] prove that \[\frac{dy}{dx} = \frac{y}{x}\] ?


If \[x^y + y^x = \left( x + y \right)^{x + y} , \text{ find } \frac{dy}{dx}\] ?


If \[y = \log\frac{x^2 + x + 1}{x^2 - x + 1} + \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{\sqrt{3} x}{1 - x^2} \right), \text{ find } \frac{dy}{dx} .\] ?


\[\text{ If } x = e^{x/y} , \text{ prove that } \frac{dy}{dx} = \frac{x - y}{x\log x}\] ?

Find \[\frac{dy}{dx}\] ,When \[x = a \left( 1 - \cos \theta \right) \text{ and } y = a \left( \theta + \sin \theta \right) \text{ at } \theta  = \frac{\pi}{2}\] ?


If \[x = a \left( \frac{1 + t^2}{1 - t^2} \right) \text { and y } = \frac{2t}{1 - t^2}, \text { find } \frac{dy}{dx}\] ?


Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2 \sqrt{2}}, \frac{1}{\sqrt{2 \sqrt{2}}} \right)\] ?

If \[f\left( 0 \right) = f\left( 1 \right) = 0, f'\left( 1 \right) = 2 \text { and y } = f \left( e^x \right) e^{f \left( x \right)}\] write the value of \[\frac{dy}{dx} \text{ at x } = 0\] ?


If \[y = x^x , \text{ find } \frac{dy}{dx} \text{ at } x = e\] ?


If \[u = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ and v} = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\] where \[- 1 < x < 1\], then write the value of \[\frac{du}{dv}\] ?


If \[y = \left( 1 + \frac{1}{x} \right)^x , \text{ then} \frac{dy}{dx} =\] ____________ .


If \[x^y = e^{x - y} ,\text{ then } \frac{dy}{dx}\] is __________ .


If \[\sin^{- 1} \left( \frac{x^2 - y^2}{x^2 + y^2} \right) = \text { log a then } \frac{dy}{dx}\] is equal to _____________ .


Find the second order derivatives of the following function ex sin 5x  ?


If y = ex cos x, prove that \[\frac{d^2 y}{d x^2} = 2 e^x \cos \left( x + \frac{\pi}{2} \right)\] ?


If x = 4z2 + 5, y = 6z2 + 7z + 3, find \[\frac{d^2 y}{d x^2}\] ?


If \[f\left( x \right) = \frac{\sin^{- 1} x}{\sqrt{1 - x^2}}\] then (1 − x)2 '' (x) − xf(x) =

 


If \[y = \tan^{- 1} \left\{ \frac{\log_e \left( e/ x^2 \right)}{\log_e \left( e x^2 \right)} \right\} + \tan^{- 1} \left( \frac{3 + 2 \log_e x}{1 - 6 \log_e x} \right)\], then \[\frac{d^2 y}{d x^2} =\]

 


If xy = e(x – y), then show that `dy/dx = (y(x-1))/(x(y+1)) .`


Find the minimum value of (ax + by), where xy = c2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×