Advertisements
Advertisements
प्रश्न
Find \[\frac{dy}{dx}\] \[y = x^x + \left( \sin x \right)^x\] ?
उत्तर
\[\text{We have, y} = x^x + \left( \sin x \right)^x \]
\[ \Rightarrow y = e^{\log x^x} +e^{\log \left( \sin x\right)^{x}} \]
\[ \Rightarrow y = e^{x \log x} + e^{x \log \sin x}\]
Differentiating with respect to x using chain rule and product rule,
\[\frac{dy}{dx} = \frac{d}{dx}\left( e^{x \log x} \right) + \frac{d}{dx}\left( e^{x \log \sin x} \right)\]
\[ = e^{x \log x} \frac{d}{dx}\left( x \log x \right) + e^{x \log \sin x} \frac{d}{dx}\left( x \log \sin x \right)\]
\[ = e^{x\log x} \left[ x\frac{d}{dx}\left( \log x \right) + \log x\frac{d}{dx}\left( x \right) \right] + e^{\log \left( \sin x \right)^x} \left[ x\frac{d}{dx}\left( \log \sin x \right) + \log \sin x\frac{d}{dx}\left( x \right) \right] \]
\[ = x^x \left[ x\left( \frac{1}{x} \right) + \log x\left( 1 \right) \right] + \left( \sin x \right)^x \left[ x\left( \frac{1}{\sin x} \right)\frac{d}{dx}\left( \sin x \right) + \log \sin x \right]\]
\[ = x^x \left[ 1 + \log x \right] + \left( \sin x \right)^x \left[ x\left( \frac{1}{\sin x} \right)\left( \cos x \right) + \log \sin x \right]\]
\[ = x^x \left[ 1 + \log x \right] + \left( \sin x \right)^x \left[ x \cot x + \log \sin x \right]\]
APPEARS IN
संबंधित प्रश्न
Differentiate etan x ?
Differentiate \[\sqrt{\frac{a^2 - x^2}{a^2 + x^2}}\] ?
Differentiate \[\log \sqrt{\frac{1 - \cos x}{1 + \cos x}}\] ?
Differentiate \[\frac{e^{2x} + e^{- 2x}}{e^{2x} - e^{- 2x}}\] ?
If \[y = \log \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]prove that \[\frac{dy}{dx} = \frac{x - 1}{2x \left( x + 1 \right)}\] ?
If \[y = \log \sqrt{\frac{1 + \tan x}{1 - \tan x}}\] prove that \[\frac{dy}{dx} = \sec 2x\] ?
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\], prove that \[2 x\frac{dy}{dx} = \sqrt{x} - \frac{1}{\sqrt{x}}\] ?
Differentiate \[\cos^{- 1} \left\{ 2x\sqrt{1 - x^2} \right\}, \frac{1}{\sqrt{2}} < x < 1\] ?
Differentiate \[\cos^{- 1} \left\{ \sqrt{\frac{1 + x}{2}} \right\}, - 1 < x < 1\] ?
Differentiate \[\cos^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?
If \[y = \cos^{- 1} \left\{ \frac{2x - 3 \sqrt{1 - x^2}}{\sqrt{13}} \right\}, \text{ find } \frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\] in the following case \[\tan^{- 1} \left( x^2 + y^2 \right) = a\] ?
If \[y = x \sin y\] , Prove that \[\frac{dy}{dx} = \frac{\sin y}{\left( 1 - x \cos y \right)}\] ?
Differentiate \[\left( \sin x \right)^{\cos x}\] ?
Differentiate \[{10}^{ \log \sin x }\] ?
Differentiate \[\left( \cos x \right)^x + \left( \sin x \right)^{1/x}\] ?
Find \[\frac{dy}{dx}\] \[y = e^x + {10}^x + x^x\] ?
find \[\frac{dy}{dx}\] \[y = \frac{\left( x^2 - 1 \right)^3 \left( 2x - 1 \right)}{\sqrt{\left( x - 3 \right) \left( 4x - 1 \right)}}\] ?
Find \[\frac{dy}{dx}\] \[y = \frac{e^{ax} \cdot \sec x \cdot \log x}{\sqrt{1 - 2x}}\] ?
Find \[\frac{dy}{dx}\] \[y = e^{3x} \sin 4x \cdot 2^x\] ?
If \[x^y \cdot y^x = 1\] , prove that \[\frac{dy}{dx} = - \frac{y \left( y + x \log y \right)}{x \left( y \log x + x \right)}\] ?
If \[\frac{dy}{dx}\] when \[x = a \cos \theta \text{ and } y = b \sin \theta\] ?
If \[x = e^{\cos 2 t} \text{ and y }= e^{\sin 2 t} ,\] prove that \[\frac{dy}{dx} = - \frac{y \log x}{x \log y}\] ?
Differentiate x2 with respect to x3
Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2}, - \frac{1}{2 \sqrt{2}} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{1 + ax}{1 - ax} \right)\] with respect to \[\sqrt{1 + a^2 x^2}\] ?
If \[f\left( 0 \right) = f\left( 1 \right) = 0, f'\left( 1 \right) = 2 \text { and y } = f \left( e^x \right) e^{f \left( x \right)}\] write the value of \[\frac{dy}{dx} \text{ at x } = 0\] ?
Differential coefficient of sec(tan−1 x) is ______.
Find the second order derivatives of the following function log (sin x) ?
If y = e−x cos x, show that \[\frac{d^2 y}{d x^2} = 2 e^{- x} \sin x\] ?
If \[y = e^{2x} \left( ax + b \right)\] show that \[y_2 - 4 y_1 + 4y = 0\] ?
If y = 3 e2x + 2 e3x, prove that \[\frac{d^2 y}{d x^2} - 5\frac{dy}{dx} + 6y = 0\] ?
If y = (cot−1 x)2, prove that y2(x2 + 1)2 + 2x (x2 + 1) y1 = 2 ?
If y = |x − x2|, then find \[\frac{d^2 y}{d x^2}\] ?
If x = f(t) and y = g(t), then \[\frac{d^2 y}{d x^2}\] is equal to
If y = sin (m sin−1 x), then (1 − x2) y2 − xy1 is equal to
If \[\frac{d}{dx}\left[ x^n - a_1 x^{n - 1} + a_2 x^{n - 2} + . . . + \left( - 1 \right)^n a_n \right] e^x = x^n e^x\] then the value of ar, 0 < r ≤ n, is equal to
If y2 = ax2 + bx + c, then \[y^3 \frac{d^2 y}{d x^2}\] is
Find the minimum value of (ax + by), where xy = c2.
If p, q, r, s are real number and pr = 2(q + s) then for the equation x2 + px + q = 0 and x2 + rx + s = 0 which of the following statement is true?