Advertisements
Advertisements
प्रश्न
Differentiate \[\tan^{- 1} \left( \frac{1 + ax}{1 - ax} \right)\] with respect to \[\sqrt{1 + a^2 x^2}\] ?
उत्तर
\[\text { Let, u }= \tan^{- 1} \left( \frac{1 + ax}{1 - ax} \right)\]
\[\text { Put ax } = \tan\theta\]
\[ \Rightarrow u = \tan^{- 1} \left( \frac{1 + \tan\theta}{1 - \tan\theta} \right)\]
\[ \Rightarrow u = \tan^{- 1} \left( \frac{\tan\frac{\pi}{4} + \tan\theta}{1 - \tan\frac{\pi}{4}\tan\theta} \right)\]
\[ \Rightarrow u = \tan^{- 1} \left[ \tan\left( \frac{\pi}{4} + \theta \right) \right]\]
\[ \Rightarrow u = \frac{\pi}{4} + \theta\]
\[ \Rightarrow u = \frac{\pi}{4} + \tan^{- 1} \left( ax \right) \left[ \text { Since}, \tan\theta = ax \right] \]
Differentiating it with respect to x,
\[\frac{du}{dx} = 0 + \frac{1}{1 + \left( ax \right)^2}\frac{d}{dx}\left( ax \right) \]
\[ \Rightarrow \frac{du}{dx} = \frac{a}{1 + a^2 x^2} . . . \left( i \right) \]
\[\text { Now,} \]
\[\text { Let, v } = \sqrt{1 + a^2 x^2}\]
Differentiating it with respect to x,
\[\frac{dv}{dx} = \frac{1}{2\sqrt{1 + a^2 x^2}}\frac{d}{dx}\left( 1 + a^2 x^2 \right)\]
\[ \Rightarrow \frac{dv}{dx} = \frac{1}{2\sqrt{1 + a^2 x^2}}\left( 2 a^2 x \right)\]
\[ \Rightarrow \frac{dv}{dx} = \frac{a^2 x}{\sqrt{1 + a^2 x^2}} . . . \left( ii \right) \]
\[\text { Dividing equation } \left( i \right) \text { by }\left( ii \right), \]
\[\frac{\frac{du}{dx}}{\frac{dv}{dx}} = \frac{a}{1 + a^2 x^2} \times \frac{\sqrt{1 + a^2 x^2}}{a^2 x}\]
\[\frac{du}{dv} = \frac{1}{ax\sqrt{1 + a^2 x^2}}\]
APPEARS IN
संबंधित प्रश्न
Differentiate \[e^{\sin} \sqrt{x}\] ?
Differentiate log7 (2x − 3) ?
Differentiate \[e^{ax} \sec x \tan 2x\] ?
Differentiate \[\cos^{- 1} \left\{ \sqrt{\frac{1 + x}{2}} \right\}, - 1 < x < 1\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{\sqrt{1 + x} + \sqrt{1 - x}}{2} \right\}, 0 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + a^2 x^2} - 1}{ax} \right), x \neq 0\] ?
Differentiate \[\sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), x \in R\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + b \tan x}{b - a \tan x} \right)\] ?
If \[y = \sin \left[ 2 \tan^{- 1} \left\{ \frac{\sqrt{1 - x}}{1 + x} \right\} \right], \text{ find } \frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\] in the following case \[\tan^{- 1} \left( x^2 + y^2 \right) = a\] ?
If \[\cos y = x \cos \left( a + y \right), \text{ with } \cos a \neq \pm 1, \text{ prove that } \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\] ?
Differentiate \[x^{1/x}\] with respect to x.
Find \[\frac{dy}{dx}\] \[y = \sin x \sin 2x \sin 3x \sin 4x\] ?
Find \[\frac{dy}{dx}\] \[y = x^x + \left( \sin x \right)^x\] ?
If \[x^m y^n = 1\] , prove that \[\frac{dy}{dx} = - \frac{my}{nx}\] ?
If \[e^y = y^x ,\] prove that\[\frac{dy}{dx} = \frac{\left( \log y \right)^2}{\log y - 1}\] ?
If \[y = x \sin \left( a + y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?
If \[y = x \sin y\] , prove that \[\frac{dy}{dx} = \frac{y}{x \left( 1 - x \cos y \right)}\] ?
If \[\left( \cos x \right)^y = \left( \cos y \right)^x , \text{ find } \frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\], when \[x = a t^2 \text{ and } y = 2\ at \] ?
Find \[\frac{dy}{dx}\], When \[x = a \left( \theta + \sin \theta \right) \text{ and } y = a \left( 1 - \cos \theta \right)\] ?
Find \[\frac{dy}{dx}\],when \[x = a e^\theta \left( \sin \theta - \cos \theta \right), y = a e^\theta \left( \sin \theta + \cos \theta \right)\] ?
Find \[\frac{dy}{dx}\] , when \[x = b \sin^2 \theta \text{ and } y = a \cos^2 \theta\] ?
Find \[\frac{dy}{dx}\] ,When \[x = a \left( 1 - \cos \theta \right) \text{ and } y = a \left( \theta + \sin \theta \right) \text{ at } \theta = \frac{\pi}{2}\] ?
If \[x = a\sin2t\left( 1 + \cos2t \right) \text { and y } = b\cos2t\left( 1 - \cos2t \right)\] , show that at \[t = \frac{\pi}{4}, \frac{dy}{dx} = \frac{b}{a}\] ?
Differentiate \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\] \[x \in \left( - 1, 0 \right)\] ?
Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2}, - \frac{1}{2 \sqrt{2}} \right)\] ?
If \[f'\left( 1 \right) = 2 \text { and y } = f \left( \log_e x \right), \text { find} \frac{dy}{dx} \text { at }x = e\] ?
Find the second order derivatives of the following function x cos x ?
If y = 3 cos (log x) + 4 sin (log x), prove that x2y2 + xy1 + y = 0 ?
If \[y = e^{2x} \left( ax + b \right)\] show that \[y_2 - 4 y_1 + 4y = 0\] ?
If y = ae2x + be−x, show that, \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\] ?
If y = sin (log x), prove that \[x^2 \frac{d^2 y}{d x^2} + x\frac{dy}{dx} + y = 0\] ?
If y = cosec−1 x, x >1, then show that \[x\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + \left( 2 x^2 - 1 \right)\frac{dy}{dx} = 0\] ?
\[\text { If x } = a \sin t - b \cos t, y = a \cos t + b \sin t, \text { prove that } \frac{d^2 y}{d x^2} = - \frac{x^2 + y^2}{y^3} \] ?
\[\text { If y } = x^n \left\{ a \cos\left( \log x \right) + b \sin\left( \log x \right) \right\}, \text { prove that } x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)x\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0 \] Disclaimer: There is a misprint in the question. It must be
\[x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)x\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0\] instead of 1
\[x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0\] ?
If y = a xn + 1 + bx−n and \[x^2 \frac{d^2 y}{d x^2} = \lambda y\] then write the value of λ ?
Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right) w . r . t . \sin^{- 1} \frac{2x}{1 + x^2},\]tan-11+x2-1x w.r.t. sin-12x1+x2, if x ∈ (–1, 1) .
\[\text { If } y = \left( x + \sqrt{1 + x^2} \right)^n , \text { then show that }\]
\[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = n^2 y .\]