Advertisements
Advertisements
प्रश्न
\[\text { If } y = \left( x + \sqrt{1 + x^2} \right)^n , \text { then show that }\]
\[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = n^2 y .\]
उत्तर
\[y = \left( x + \sqrt{1 + x^2} \right)^n \]
Differentiating both sides w.r.t. x, we get
\[\frac{dy}{dx} = n \left( x + \sqrt{1 + x^2} \right)^{n - 1} \times \frac{d}{dx}\left( x + \sqrt{1 + x^2} \right)\]
\[\Rightarrow \frac{dy}{dx} = n \left( x + \sqrt{1 + x^2} \right)^{n - 1} \times \left( 1 + \frac{2x}{2\sqrt{1 + x^2}} \right)\]
\[ \Rightarrow \frac{dy}{dx} = n \left( x + \sqrt{1 + x^2} \right)^{n - 1} \times \left( \frac{x + \sqrt{1 + x^2}}{\sqrt{1 + x^2}} \right)\]
\[ \Rightarrow \frac{dy}{dx} = \frac{n \left( x + \sqrt{1 + x^2} \right)^n}{\sqrt{1 + x^2}}\]
\[\Rightarrow \frac{dy}{dx} = \frac{ny}{\sqrt{1 + x^2}}\]
\[ \Rightarrow \sqrt{1 + x^2}\frac{dy}{dx} = ny\]
Squaring both sides, we get
\[\left( 1 + x^2 \right) \left( \frac{dy}{dx} \right)^2 = n^2 y^2\]
Again differentiating both sides w.r.t. x, we get
\[\left( 1 + x^2 \right) \times \left( 2\frac{dy}{dx} \times \frac{d^2 y}{d x^2} \right) + \left( \frac{dy}{dx} \right)^2 \times 2x = 2 n^2 y\frac{dy}{dx}\]
\[ \Rightarrow 2\frac{dy}{dx}\left[ \left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} \right] = 2 n^2 y\frac{dy}{dx}\]
\[ \Rightarrow \left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = n^2 y\]
APPEARS IN
संबंधित प्रश्न
If y = xx, prove that `(d^2y)/(dx^2)−1/y(dy/dx)^2−y/x=0.`
Differentiate the following functions from first principles e3x.
Differentiate (log sin x)2 ?
Differentiate \[\log \left( \frac{x^2 + x + 1}{x^2 - x + 1} \right)\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{\sin x + \cos x}{\sqrt{2}} \right\}, - \frac{3 \pi}{4} < x < \frac{\pi}{4}\] ?
Differentiate \[\sin^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{2^{x + 1} \cdot 3^x}{1 + \left( 36 \right)^x} \right\}\] with respect to x ?
Find \[\frac{dy}{dx}\] in the following case \[xy = c^2\] ?
Find \[\frac{dy}{dx}\] in the following case \[4x + 3y = \log \left( 4x - 3y \right)\] ?
Differentiate \[e^{x \log x}\] ?
Differentiate \[x^\left( \sin x - \cos x \right) + \frac{x^2 - 1}{x^2 + 1}\] ?
If \[y = x \sin \left( a + y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?
If \[y = \sqrt{\log x + \sqrt{\log x + \sqrt{\log x + ... to \infty}}}\], prove that \[\left( 2 y - 1 \right) \frac{dy}{dx} = \frac{1}{x}\] ?
Find \[\frac{dy}{dx}\], when \[x = a t^2 \text{ and } y = 2\ at \] ?
Differentiate \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\] \[x \in \left( - 1, 0 \right)\] ?
Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2}, - \frac{1}{2 \sqrt{2}} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{x - 1}{x + 1} \right)\] with respect to \[\sin^{- 1} \left( 3x - 4 x^3 \right), \text { if }- \frac{1}{2} < x < \frac{1}{2}\] ?
\[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cot^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right),\text { if }0 < x < 1\] ?
If f (x) = loge (loge x), then write the value of `f' (e)` ?
If \[y = x^x , \text{ find } \frac{dy}{dx} \text{ at } x = e\] ?
The derivative of \[\cos^{- 1} \left( 2 x^2 - 1 \right)\] with respect to \[\cos^{- 1} x\] is ___________ .
If \[f\left( x \right) = \sqrt{x^2 - 10x + 25}\] then the derivative of f (x) in the interval [0, 7] is ____________ .
If y = tan−1 x, show that \[\left( 1 + x^2 \right) \frac{d^2 y}{d x^2} + 2x\frac{dy}{dx} = 0\] ?
If y = x + ex, find \[\frac{d^2 x}{d y^2}\] ?
If x = f(t) and y = g(t), then write the value of \[\frac{d^2 y}{d x^2}\] ?
\[\frac{d^{20}}{d x^{20}} \left( 2 \cos x \cos 3 x \right) =\]
If y = (sin−1 x)2, then (1 − x2)y2 is equal to