Advertisements
Advertisements
प्रश्न
Differentiate \[\sin^{- 1} \left\{ \frac{\sin x + \cos x}{\sqrt{2}} \right\}, - \frac{3 \pi}{4} < x < \frac{\pi}{4}\] ?
उत्तर
\[\text{ Let, y } = \sin^{- 1} \left\{ \frac{\sin x + \cos x}{\sqrt{2}} \right\}\]
\[ \Rightarrow y = \sin^{- 1} \left\{ \sin x\left( \frac{1}{\sqrt{2}} \right) + \cos \left( \frac{1}{\sqrt{2}} \right) \right\}\]
\[ \Rightarrow y = \sin^{- 1} \left\{ \sin x \cos\frac{\pi}{4} + \cos x \sin\frac{\pi}{4} \right\}\]
\[ \Rightarrow y = \sin^{- 1} \left\{ \sin\left( x + \frac{\pi}{4} \right) \right\} . . . \left( i \right)\]
\[\text{ Here, } \frac{- 3\pi}{4} < x < \frac{\pi}{4}\]
\[ \Rightarrow \frac{- 3\pi}{4} + \frac{\pi}{4} < x + \frac{\pi}{4} < \frac{\pi}{4} + \frac{\pi}{4}\]
\[ \Rightarrow \frac{- \pi}{2} < x + \frac{\pi}{4} < \frac{\pi}{2}\]
\[\text{ From } \left( i \right) \text{ we get }, \]
\[ \Rightarrow y = x + \frac{\pi}{4} \left[ Since, \sin^{- 1} \left( \sin\theta \right) = \theta, \text{ if }\theta \in \left[ \frac{- \pi}{2}, \frac{\pi}{2} \right] \right]\]
\[\text{ Differentiating it with respect to x }, \]
\[\frac{d y}{d x} = 1 + 0\]
\[ \therefore \frac{d y}{d x} = 1\]
APPEARS IN
संबंधित प्रश्न
Differentiate sin (log x) ?
Differentiate log7 (2x − 3) ?
Differentiate tan 5x° ?
Differentiate \[\sin^{- 1} \left( \frac{x}{\sqrt{x^2 + a^2}} \right)\] ?
Differentiate \[e^{ax} \sec x \tan 2x\] ?
If xy = 4, prove that \[x\left( \frac{dy}{dx} + y^2 \right) = 3 y\] ?
Differentiate \[\sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), x \in R\] ?
Differentiate \[\tan^{- 1} \left( \frac{x - a}{x + a} \right)\] ?
If \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), 0 < x < 1,\] prove that \[\frac{dy}{dx} = \frac{4}{1 + x^2}\] ?
Find \[\frac{dy}{dx}\] in the following case \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] ?
Find \[\frac{dy}{dx}\] in the following case \[\left( x + y \right)^2 = 2axy\] ?
Differentiate \[\left( \log x \right)^{\cos x}\] ?
Differentiate \[\sin \left( x^x \right)\] ?
Differentiate \[\left( \cos x \right)^x + \left( \sin x \right)^{1/x}\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\cot x} + \left( \cot x \right)^{\tan x}\] ?
If `y=(sinx)^x + sin^-1 sqrtx "then find" dy/dx`
Find \[\frac{dy}{dx}\] \[y = x^{\cos x} + \left( \sin x \right)^{\tan x}\] ?
If \[y = x \sin \left( a + y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?
Find \[\frac{dy}{dx}\] , when \[x = \frac{1 - t^2}{1 + t^2} \text{ and y } = \frac{2 t}{1 + t^2}\] ?
If \[x = a \left( \frac{1 + t^2}{1 - t^2} \right) \text { and y } = \frac{2t}{1 - t^2}, \text { find } \frac{dy}{dx}\] ?
If \[x = 10 \left( t - \sin t \right), y = 12 \left( 1 - \cos t \right), \text { find } \frac{dy}{dx} .\] ?
Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2}, - \frac{1}{2 \sqrt{2}} \right)\] ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( 0, \frac{1}{\sqrt{2}} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right)\] with respect to \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right), \text { if } - \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?
\[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cot^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right),\text { if }0 < x < 1\] ?
If \[f\left( x \right) = x + 1\] , then write the value of \[\frac{d}{dx} \left( fof \right) \left( x \right)\] ?
If f (x) = logx2 (log x), the `f' (x)` at x = e is ____________ .
Given \[f\left( x \right) = 4 x^8 , \text { then }\] _________________ .
Find the second order derivatives of the following function ex sin 5x ?
If x = a (θ + sin θ), y = a (1 + cos θ), prove that \[\frac{d^2 y}{d x^2} = - \frac{a}{y^2}\] ?
If y = (tan−1 x)2, then prove that (1 + x2)2 y2 + 2x(1 + x2)y1 = 2 ?
If \[y = e^{a \cos^{- 1}} x\] ,prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - a^2 y = 0\] ?
If y = cosec−1 x, x >1, then show that \[x\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + \left( 2 x^2 - 1 \right)\frac{dy}{dx} = 0\] ?
If x = a cos nt − b sin nt and \[\frac{d^2 x}{dt} = \lambda x\] then find the value of λ ?
If y = x + ex, find \[\frac{d^2 x}{d y^2}\] ?
If y = a sin mx + b cos mx, then \[\frac{d^2 y}{d x^2}\] is equal to
If y = (sin−1 x)2, then (1 − x2)y2 is equal to
If p, q, r, s are real number and pr = 2(q + s) then for the equation x2 + px + q = 0 and x2 + rx + s = 0 which of the following statement is true?