मराठी

If X = a ( 1 + T 2 1 − T 2 ) and Y = 2 T 1 − T 2 , Find D Y D X ? - Mathematics

Advertisements
Advertisements

प्रश्न

If \[x = a \left( \frac{1 + t^2}{1 - t^2} \right) \text { and y } = \frac{2t}{1 - t^2}, \text { find } \frac{dy}{dx}\] ?

उत्तर

\[\text { We have, x } = a\left( \frac{1 + t^2}{1 - t^2} \right)\]
\[\Rightarrow \frac{dx}{dt} = a\left[ \frac{\left( 1 - t^2 \right)\frac{d}{dt}\left( 1 + t^2 \right) - \left( 1 + t^2 \right)\frac{d}{dt}\left( 1 - t^2 \right)}{\left( 1 - t^2 \right)^2} \right] \left[ \text { Using quotient rule } \right]\]
\[ \Rightarrow \frac{dx}{dt} = a\left[ \frac{\left( 1 - t^2 \right)\left( 2t \right) - \left( 1 + t^2 \right)\left( - 2t \right)}{\left( 1 - t^2 \right)^2} \right]\]
\[ \Rightarrow \frac{dx}{dt} = a\left[ \frac{2t - 2 t^3 + 2t + 2 t^3}{\left( 1 - t^2 \right)^2} \right]\]
\[ \Rightarrow \frac{dx}{dt} = \frac{4at}{\left( 1 - t^2 \right)^2} . . . \left( i \right)\]
\[\text { and,} \]
\[ y = \frac{2t}{1 - t^2}\]
\[\Rightarrow \frac{dy}{dt} = 2\left[ \frac{\left( 1 - t^2 \right)\frac{d}{dt}\left( t \right) - t\frac{d}{dt}\left( 1 - t^2 \right)}{\left( 1 - t^2 \right)^2} \right] \left[ \text { Using quotient rule } \right]\]
\[ \Rightarrow \frac{dy}{dt} = 2\left[ \frac{\left( 1 - t^2 \right)\left( 1 \right) - t\left( - 2t \right)}{\left( 1 - t^2 \right)^2} \right]\]
\[ \Rightarrow \frac{dy}{dt} = 2\left[ \frac{1 - t^2 + 2 t^2}{\left( 1 - t^2 \right)^2} \right]\]
\[ \Rightarrow \frac{dy}{dt} = \frac{2\left( 1 + t^2 \right)}{\left( 1 - t^2 \right)^2} . . . \left( ii \right)\]
\[\text { Dividing equation } \left( ii \right) \text { by } \left( i \right), \]
\[\frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{2\left( 1 + t^2 \right)}{\left( 1 - t^2 \right)^2} \times \frac{\left( 1 - t^2 \right)^2}{4at}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\left( 1 + t^2 \right)}{2at}\]

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Differentiation - Exercise 11.07 [पृष्ठ १०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 11 Differentiation
Exercise 11.07 | Q 21 | पृष्ठ १०३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

 

If y = xx, prove that `(d^2y)/(dx^2)−1/y(dy/dx)^2−y/x=0.`

 

​Differentiate the following function from first principles \[e^\sqrt{\cot x}\] .


Differentiate `2^(x^3)` ?


Differentiate \[\log \left( 3x + 2 \right) - x^2 \log \left( 2x - 1 \right)\] ?


Differentiate \[\log \sqrt{\frac{x - 1}{x + 1}}\] ?


If \[y = \log \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]prove that \[\frac{dy}{dx} = \frac{x - 1}{2x \left( x + 1 \right)}\] ?

 


If  \[y = \log \sqrt{\frac{1 + \tan x}{1 - \tan x}}\]  prove that \[\frac{dy}{dx} = \sec 2x\] ?


If \[y = e^x \cos x\] ,prove that \[\frac{dy}{dx} = \sqrt{2} e^x \cdot \cos \left( x + \frac{\pi}{4} \right)\] ?


If \[y = \sqrt{a^2 - x^2}\] prove that  \[y\frac{dy}{dx} + x = 0\] ?


Differentiate  \[\sin^{- 1} \left\{ \sqrt{\frac{1 - x}{2}} \right\}, 0 < x < 1\]  ?


Differentiate \[\tan^{- 1} \left\{ \frac{x}{\sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?


Find  \[\frac{dy}{dx}\] in the following case \[x^5 + y^5 = 5 xy\] ?

 


Find  \[\frac{dy}{dx}\] in the following case \[\left( x + y \right)^2 = 2axy\] ?

 


Find  \[\frac{dy}{dx}\] in the following case \[\left( x^2 + y^2 \right)^2 = xy\] ?

 


If \[xy = 1\] prove that \[\frac{dy}{dx} + y^2 = 0\] ?


Differentiate \[x^{\sin x}\]  ?


Differentiate \[\left( \sin x \right)^{\cos x}\] ?


Differentiate \[\left( \log x \right)^{ \log x }\] ?


If \[x^y + y^x = \left( x + y \right)^{x + y} , \text{ find } \frac{dy}{dx}\] ?


If \[y = \left( \tan x \right)^{\left( \tan x \right)^{\left( \tan x \right)^{. . . \infty}}}\], prove that \[\frac{dy}{dx} = 2\ at\ x = \frac{\pi}{4}\] ?

 


Find \[\frac{dy}{dx}\] ,when \[x = \frac{e^t + e^{- t}}{2} \text{ and } y = \frac{e^t - e^{- t}}{2}\] ?


Find \[\frac{dy}{dx}\] , when  \[x = \cos^{- 1} \frac{1}{\sqrt{1 + t^2}} \text{ and y } = \sin^{- 1} \frac{t}{\sqrt{1 + t^2}}, t \in R\] ?


\[\sin x = \frac{2t}{1 + t^2}, \tan y = \frac{2t}{1 - t^2}, \text { find }  \frac{dy}{dx}\] ?

Differentiate \[\tan^{- 1} \left( \frac{x - 1}{x + 1} \right)\] with respect to \[\sin^{- 1} \left( 3x - 4 x^3 \right), \text { if }- \frac{1}{2} < x < \frac{1}{2}\] ?


If f (x) = loge (loge x), then write the value of `f' (e)` ?


If \[y = x \left| x \right|\] , find \[\frac{dy}{dx} \text{ for } x < 0\] ?


If \[y = \log_a x, \text{ find } \frac{dy}{dx} \] ? 


If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] _____________ .


If \[y = \sqrt{\sin x + y},\text { then } \frac{dy}{dx} =\] __________ .


Find the second order derivatives of the following function  x3 + tan x ?


If log y = tan−1 x, show that (1 + x2)y2 + (2x − 1) y1 = 0 ?


If  \[y = e^{a \cos^{- 1}} x\] ,prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - a^2 y = 0\] ?


If y = etan x, then (cos2 x)y2 =


If x = f(t) cos t − f' (t) sin t and y = f(t) sin t + f'(t) cos t, then\[\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2 =\]

 


If x = sin t and y = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] .


Find the minimum value of (ax + by), where xy = c2.


Differentiate `log [x+2+sqrt(x^2+4x+1)]`


Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base. 


Range of 'a' for which x3 – 12x + [a] = 0 has exactly one real root is (–∞, p) ∪ [q, ∞), then ||p| – |q|| is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×