Advertisements
Advertisements
प्रश्न
Differentiate the following function from first principles \[e^\sqrt{\cot x}\] .
उत्तर
\[\text{Let} f\left( x \right) = e^\sqrt{\cot x} \]
\[ \Rightarrow f\left( x + h \right) = e^\sqrt{\cot\left( x + h \right)} \]
\[ \therefore \frac{d}{dx}\left\{ f\left( x \right) \right\} = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{e^\sqrt{\cot\left( x + h \right)} - e^\sqrt{\cot x}}{h}\]
\[ = \lim_{h \to 0} \frac{e^\sqrt{\cot x} \left( e^{\sqrt{\cot\left( x + h \right)} - \sqrt{\cot x}} - 1 \right)}{h}\]
\[ = e^\sqrt{\cot x} \lim_{h \to 0} \left(\frac{e^{\sqrt{\cot\left( x + h \right)} - \sqrt{\cot x}} - 1}{\sqrt{\cot\left( x + h \right)} - \sqrt{\cot x}} \right) \times \left( \frac{\sqrt{\cot\left( x + h \right)} - \sqrt{\cot x}}{h} \right)\]
\[ = e^\sqrt{\cot x} \lim_{h \to 0} \frac{\left( \sqrt{\cot\left( x + h \right)} - \sqrt{\cot x} \right)}{h} \times \frac{\sqrt{\cot\left( x + h \right)} + \sqrt{\cot x}}{\sqrt{\cot\left( x + h \right)} + \sqrt{\cot x}} \left[ \because \lim_{x \to 0} \frac{e^x - 1}{x} = 1 \text{ and rationalizing the numerator } \right]\]
\[ = e^\sqrt{\cot x} \lim_{h \to 0} \frac{\cot\left( x + h \right) - \cot x}{h\left( \sqrt{\cot\left( x + h \right)} + \sqrt{\cot x} \right)}\]
\[ = e^\sqrt{\cot x} \lim_{h \to 0} \frac{\frac{\cot\left( x + h \right)\cot x + 1}{\cot\left( x - x - h \right)}}{h\left( \sqrt{\cot\left( x + h \right)} + \sqrt{\cot x} \right)} \left[ \because \cot\left( A - B \right) = \frac{\cot A\cot B + 1}{\cot B - \cot A} \right]\]
\[ = e^\sqrt{\cot x} \lim_{h \to 0} \frac{\cot\left( x + h \right)\cot x + 1}{\cot\left( - h \right) \times h\left( \sqrt{\cot\left( x + h \right)} + \sqrt{\cot x} \right)}\]
\[ = - e^\sqrt{\cot x} \lim_{h \to 0} \frac{\cot\left( x + h \right)\cot x + 1}{\left( \frac{h}{\tanh} \right)\left( \sqrt{\cot\left( x + h \right)} + \sqrt{\cot x} \right)}\]
\[ = \frac{e^\sqrt{\cot x} \times \left( \cot^2 x + 1 \right)}{2\sqrt{\cot x}} \left[ \because \lim_{x \to 0} \frac{\tan x}{x} = 1 \right]\]
\[ = - \frac{e^\sqrt{\cot x} \times {cosec}^2 x}{2\sqrt{\cot x}} \left[ \because \left( 1 + \cot^2 x \right) = {cosec}^2 x \right]\]
\[ \therefore \frac{d}{dx}\left( e^\sqrt{cot x} \right) = - \frac{e^\sqrt{\cot x} \times {cosec}^2 x}{2\sqrt{\cot x}}\]
APPEARS IN
संबंधित प्रश्न
Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is `cos^(-1)(1/sqrt3)`
Differentiate the following functions from first principles x2ex ?
Differentiate tan (x° + 45°) ?
Differentiate sin2 (2x + 1) ?
Differentiate \[3^{x^2 + 2x}\] ?
Differentiate \[3^{x \log x}\] ?
Differentiate \[\log \left( \frac{x^2 + x + 1}{x^2 - x + 1} \right)\] ?
Differentiate \[x \sin 2x + 5^x + k^k + \left( \tan^2 x \right)^3\] ?
Differentiate \[\frac{x^2 + 2}{\sqrt{\cos x}}\] ?
Differentiate \[\cos \left( \log x \right)^2\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{a + \sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?
Differentiate \[\sin^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + bx}{b - ax} \right)\] ?
If the derivative of tan−1 (a + bx) takes the value 1 at x = 0, prove that 1 + a2 = b ?
Find \[\frac{dy}{dx}\] in the following case \[4x + 3y = \log \left( 4x - 3y \right)\] ?
If \[\sqrt{1 - x^2} + \sqrt{1 - y^2} = a \left( x - y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sqrt{1 - y^2}}{1 - x^2}\] ?
If \[y \sqrt{1 - x^2} + x \sqrt{1 - y^2} = 1\] ,prove that \[\frac{dy}{dx} = - \sqrt{\frac{1 - y^2}{1 - x^2}}\] ?
If \[\tan \left( x + y \right) + \tan \left( x - y \right) = 1, \text{ find} \frac{dy}{dx}\] ?
If \[\sqrt{y + x} + \sqrt{y - x} = c, \text {show that } \frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\] ?
Differentiate \[x^{\sin^{- 1} x}\] ?
Find \[\frac{dy}{dx}\] \[y = x^x + \left( \sin x \right)^x\] ?
If \[y = x \sin y\] , prove that \[\frac{dy}{dx} = \frac{y}{x \left( 1 - x \cos y \right)}\] ?
If \[y = \sqrt{\cos x + \sqrt{\cos x + \sqrt{\cos x + . . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sin x}{1 - 2 y}\] ?
If \[y = \sqrt{\tan x + \sqrt{\tan x + \sqrt{\tan x + . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sec^2 x}{2 y - 1}\] ?
If \[x = e^{\cos 2 t} \text{ and y }= e^{\sin 2 t} ,\] prove that \[\frac{dy}{dx} = - \frac{y \log x}{x \log y}\] ?
Differentiate \[\left( \cos x \right)^{\sin x }\] with respect to \[\left( \sin x \right)^{\cos x }\]?
If \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] write the value of \[\frac{dy}{dx}\text { for } x > 1\] ?
If \[\sin \left( x + y \right) = \log \left( x + y \right), \text { then } \frac{dy}{dx} =\] ___________ .
Find the second order derivatives of the following function log (sin x) ?
If y = (sin−1 x)2, prove that (1 − x2)
\[\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?
If y = ae2x + be−x, show that, \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\] ?
\[\text{ If x } = a\left( \cos t + \log \tan\frac{t}{2} \right) \text { and y } = a\left( \sin t \right), \text { evaluate } \frac{d^2 y}{d x^2} \text { at t } = \frac{\pi}{3} \] ?
If y = x + ex, find \[\frac{d^2 x}{d y^2}\] ?
If f(x) = (cos x + i sin x) (cos 2x + i sin 2x) (cos 3x + i sin 3x) ...... (cos nx + i sin nx) and f(1) = 1, then f'' (1) is equal to
Let f(x) be a polynomial. Then, the second order derivative of f(ex) is
If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =
If x = sin t and y = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] .
Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base.