मराठी

If Sin ( X + Y ) = Log ( X + Y ) , Then D Y D X = (A) 2 (B) − 2 (C) 1 (D) − 1] - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\sin \left( x + y \right) = \log \left( x + y \right), \text { then } \frac{dy}{dx} =\] ___________ .

पर्याय

  • 2

  • -2

  • 1

  • -1

MCQ

उत्तर

− 1

\[\text { We have }, \sin\left( x + y \right) = \log\left( x + y \right)\]
\[ \Rightarrow \cos\left( x + y \right)\left( 1 + \frac{dy}{dx} \right) = \frac{1}{\left( x + y \right)}\left( 1 + \frac{dy}{dx} \right)\]
\[ \Rightarrow \cos\left( x + y \right) + \cos\left( x + y \right)\frac{dy}{dx} = \frac{1}{\left( x + y \right)} + \frac{1}{\left( x + y \right)}\frac{dy}{dx}\]
\[ \Rightarrow \cos\left( x + y \right)\frac{dy}{dx} - \frac{1}{\left( x + y \right)}\frac{dy}{dx} = \frac{1}{\left( x + y \right)} - \cos\left( x + y \right)\]
\[ \Rightarrow \left\{ \cos\left( x + y \right) - \frac{1}{\left( x + y \right)} \right\}\frac{dy}{dx} = \frac{1}{\left( x + y \right)} - \cos\left( x + y \right)\]
\[ \Rightarrow - \left\{ \frac{1}{\left( x + y \right)} - \cos\left( x + y \right) \right\}\frac{dy}{dx} = \frac{1}{\left( x + y \right)} - \cos\left( x + y \right)\]
\[ \Rightarrow \frac{dy}{dx} = - 1\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Differentiation - Exercise 11.10 [पृष्ठ १२०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 11 Differentiation
Exercise 11.10 | Q 13 | पृष्ठ १२०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Differentiate \[e^{3 x} \cos 2x\] ?


Differentiate \[\log \left( \tan^{- 1} x \right)\]? 


Differentiate  \[e^x \log \sin 2x\] ?


Differentiate \[\log \sqrt{\frac{x - 1}{x + 1}}\] ?


If  \[y = \log \sqrt{\frac{1 + \tan x}{1 - \tan x}}\]  prove that \[\frac{dy}{dx} = \sec 2x\] ?


Differentiate \[\sin^{- 1} \left( 1 - 2 x^2 \right), 0 < x < 1\] ?


Differentiate \[\tan^{- 1} \left( \frac{4x}{1 - 4 x^2} \right), - \frac{1}{2} < x < \frac{1}{2}\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{\sqrt{1 + x} + \sqrt{1 - x}}{2} \right\}, 0 < x < 1\] ?


If \[\sin^2 y + \cos xy = k,\] find  \[\frac{dy}{dx}\] at \[x = 1 , \] \[y = \frac{\pi}{4} .\] 


Differentiate \[\left( \log x \right)^x\] ?


Differentiate  \[\left( \sin x \right)^{\log x}\] ?


Differentiate \[x^{\sin^{- 1} x}\]  ?


Differentiate  \[\left( x^x \right) \sqrt{x}\] ?


Differentiate \[x^\left( \sin x - \cos x \right) + \frac{x^2 - 1}{x^2 + 1}\] ?


Differentiate\[\left( x + \frac{1}{x} \right)^x + x^\left( 1 + \frac{1}{x} \right)\] ?


Differentiate \[\left( \cos x \right)^x + \left( \sin x \right)^{1/x}\] ?


If \[\left( \sin x \right)^y = \left( \cos y \right)^x ,\], prove that \[\frac{dy}{dx} = \frac{\log \cos y - y cot x}{\log \sin x + x \tan y}\] ?


Find the derivative of the function f (x) given by  \[f\left( x \right) = \left( 1 + x \right) \left( 1 + x^2 \right) \left( 1 + x^4 \right) \left( 1 + x^8 \right)\] and hence find `f' (1)` ?

 


Find \[\frac{dy}{dx}\] , when \[x = b   \sin^2   \theta  \text{ and }  y = a   \cos^2   \theta\] ?


Find \[\frac{dy}{dx}\] when \[x = \frac{2 t}{1 + t^2} \text{ and } y = \frac{1 - t^2}{1 + t^2}\] ?


Find  \[\frac{dy}{dx}\] , when  \[x = \frac{1 - t^2}{1 + t^2} \text{ and y } = \frac{2 t}{1 + t^2}\] ?

 


Differentiate \[\tan^{- 1} \left( \frac{1 + ax}{1 - ax} \right)\] with respect to \[\sqrt{1 + a^2 x^2}\] ?


Let g (x) be the inverse of an invertible function f (x) which is derivable at x = 3. If f (3) = 9 and `f' (3) = 9`, write the value of `g' (9)`.


If \[y = \tan^{- 1} \left( \frac{1 - x}{1 + x} \right), \text{ find} \frac{dy}{dx}\]  ?


Given  \[f\left( x \right) = 4 x^8 , \text { then }\] _________________ .


If \[f\left( x \right) = \sqrt{x^2 + 6x + 9}, \text { then } f'\left( x \right)\] is equal to ______________ .


If \[y = \frac{1}{1 + x^{a - b} +^{c - b}} + \frac{1}{1 + x^{b - c} + x^{a - c}} + \frac{1}{1 + x^{b - a} + x^{c - a}}\] then \[\frac{dy}{dx}\]  is equal to ______________ .


If \[y = \log \sqrt{\tan x}\] then the value of \[\frac{dy}{dx}\text { at }x = \frac{\pi}{4}\] is given by __________ .


If \[y = \tan^{- 1} \left( \frac{\sin x + \cos x}{\cos x - \sin x} \right), \text { then  } \frac{dy}{dx}\] is equal to ___________ .


Find the second order derivatives of the following function  log (sin x) ?


Find the second order derivatives of the following function e6x cos 3x  ?


Find the second order derivatives of the following function tan−1 x ?


Find \[\frac{d^2 y}{d x^2}\] where \[y = \log \left( \frac{x^2}{e^2} \right)\] ?


\[\text { If }y = A e^{- kt} \cos\left( pt + c \right), \text { prove that } \frac{d^2 y}{d t^2} + 2k\frac{d y}{d t} + n^2 y = 0, \text { where } n^2 = p^2 + k^2 \] ?


If \[f\left( x \right) = \frac{\sin^{- 1} x}{\sqrt{1 - x^2}}\] then (1 − x)2 '' (x) − xf(x) =

 


If \[y = \tan^{- 1} \left\{ \frac{\log_e \left( e/ x^2 \right)}{\log_e \left( e x^2 \right)} \right\} + \tan^{- 1} \left( \frac{3 + 2 \log_e x}{1 - 6 \log_e x} \right)\], then \[\frac{d^2 y}{d x^2} =\]

 


If x = f(t) cos t − f' (t) sin t and y = f(t) sin t + f'(t) cos t, then\[\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2 =\]

 


\[\text { If } y = \left( x + \sqrt{1 + x^2} \right)^n , \text { then show that }\]

\[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = n^2 y .\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×