Advertisements
Advertisements
प्रश्न
Differentiate \[x^{\sin^{- 1} x}\] ?
उत्तर
\[\text{ Let y } = x^{\sin^{- 1} x} . . . \left( i \right)\]
\[\text{ Taking log on both sides }, \]
\[\log y = \log x^{\sin^{- 1} x } \]
\[ \Rightarrow \log y = \sin^{- 1} x \log x \]
\[\text{ Differentiating with respect to x }, \]
\[\frac{1}{y}\frac{dy}{dx} = \sin^{- 1} x\frac{d}{dx}\left( \log x \right) + \left( \log x \right)\frac{d}{dx}\left( \sin^{- 1} x \right) \]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = \sin^{- 1} x\left( \frac{1}{x} \right) + \left( \log x \right)\left( \frac{1}{\sqrt{1 - x^2}} \right)\]
\[ \Rightarrow \frac{dy}{dx} = y\left[ \frac{\sin^{- 1} x}{x} + \frac{\log x}{\sqrt{1 - x^2}} \right]\]
\[ \Rightarrow \frac{dy}{dx} = x^{\sin^{- 1} x} \left[ \frac{\sin^{- 1} x}{x} + \frac{\log x}{\sqrt{1 - x^2}} \right] \left[ \text{ using equation } \left( i \right) \right]\]
APPEARS IN
संबंधित प्रश्न
Differentiate the following functions from first principles ecos x.
Differentiate log7 (2x − 3) ?
Differentiate \[\log \left( \frac{\sin x}{1 + \cos x} \right)\] ?
Differentiate \[\frac{e^x \log x}{x^2}\] ?
Differentiate \[\log \left( cosec x - \cot x \right)\] ?
Differentiate \[e^{\sin^{- 1} 2x}\] ?
Differentiate \[\sin \left( 2 \sin^{- 1} x \right)\] ?
Differentiate \[\log \left( 3x + 2 \right) - x^2 \log \left( 2x - 1 \right)\] ?
Differentiate \[\left( \sin^{- 1} x^4 \right)^4\] ?
Differentiate \[\frac{x^2 + 2}{\sqrt{\cos x}}\] ?
Differentiate \[\tan^{- 1} \left( \frac{4x}{1 - 4 x^2} \right), - \frac{1}{2} < x < \frac{1}{2}\] ?
Find \[\frac{dy}{dx}\] in the following case \[e^{x - y} = \log \left( \frac{x}{y} \right)\] ?
If \[xy = 1\] prove that \[\frac{dy}{dx} + y^2 = 0\] ?
If \[\log \sqrt{x^2 + y^2} = \tan^{- 1} \left( \frac{y}{x} \right)\] Prove that \[\frac{dy}{dx} = \frac{x + y}{x - y}\] ?
If \[y = x \sin \left( a + y \right)\] ,Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?
If \[x^x + y^x = 1\], prove that \[\frac{dy}{dx} = - \left\{ \frac{x^x \left( 1 + \log x \right) + y^x \cdot \log y}{x \cdot y^\left( x - 1 \right)} \right\}\] ?
If \[x^y \cdot y^x = 1\] , prove that \[\frac{dy}{dx} = - \frac{y \left( y + x \log y \right)}{x \left( y \log x + x \right)}\] ?
If \[\left( \sin x \right)^y = \left( \cos y \right)^x ,\], prove that \[\frac{dy}{dx} = \frac{\log \cos y - y cot x}{\log \sin x + x \tan y}\] ?
Find the derivative of the function f (x) given by \[f\left( x \right) = \left( 1 + x \right) \left( 1 + x^2 \right) \left( 1 + x^4 \right) \left( 1 + x^8 \right)\] and hence find `f' (1)` ?
Find \[\frac{dy}{dx}\] , when \[x = \frac{3 at}{1 + t^2}, \text{ and } y = \frac{3 a t^2}{1 + t^2}\] ?
If \[x = \frac{\sin^3 t}{\sqrt{\cos 2 t}}, y = \frac{\cos^3 t}{\sqrt{\cos t 2 t}}\] , find\[\frac{dy}{dx}\] ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right), \text { if }- \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?
Differentiate \[\sin^{- 1} \left( 2 ax \sqrt{1 - a^2 x^2} \right)\] with respect to \[\sqrt{1 - a^2 x^2}, \text{ if }-\frac{1}{\sqrt{2}} < ax < \frac{1}{\sqrt{2}}\] ?
If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text{ find } \frac{dy}{dx}\] ?
If \[x = 3\sin t - \sin3t, y = 3\cos t - \cos3t \text{ find }\frac{dy}{dx} \text{ at } t = \frac{\pi}{3}\] ?
Differential coefficient of sec(tan−1 x) is ______.
If \[y = \left( 1 + \frac{1}{x} \right)^x , \text{ then} \frac{dy}{dx} =\] ____________ .
If log y = tan−1 x, show that (1 + x2)y2 + (2x − 1) y1 = 0 ?
If y = 500 e7x + 600 e−7x, show that \[\frac{d^2 y}{d x^2} = 49y\] ?
If y = 3 e2x + 2 e3x, prove that \[\frac{d^2 y}{d x^2} - 5\frac{dy}{dx} + 6y = 0\] ?
If y = cosec−1 x, x >1, then show that \[x\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + \left( 2 x^2 - 1 \right)\frac{dy}{dx} = 0\] ?
If x = 2 at, y = at2, where a is a constant, then \[\frac{d^2 y}{d x^2} \text { at x } = \frac{1}{2}\] is
If y = (sin−1 x)2, then (1 − x2)y2 is equal to
If y = etan x, then (cos2 x)y2 =
If \[y^\frac{1}{n} + y^{- \frac{1}{n}} = 2x, \text { then find } \left( x^2 - 1 \right) y_2 + x y_1 =\] ?
If y = xn−1 log x then x2 y2 + (3 − 2n) xy1 is equal to
Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right) w . r . t . \sin^{- 1} \frac{2x}{1 + x^2},\]tan-11+x2-1x w.r.t. sin-12x1+x2, if x ∈ (–1, 1) .