मराठी

Find D Y D X , When X = 3 a T 1 + T 2 , and Y = 3 a T 2 1 + T 2 ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find \[\frac{dy}{dx}\] , when \[x = \frac{3 at}{1 + t^2}, \text{ and } y = \frac{3 a t^2}{1 + t^2}\] ?

बेरीज

उत्तर

\[\text{ We have, } x = \frac{3at}{1 + t^2}\]

Differentiating with respect to t,

\[\frac{dx}{dt} = \left[ \frac{\left( 1 + t^2 \right)\frac{d}{dt}\left( 3at \right) - 3at\frac{d}{dt}\left( 1 + t^2 \right)}{\left( 1 + t^2 \right)^2} \right] ............\left[\text{using quotient rule }\right]\]

\[ \Rightarrow \frac{dx}{dt} = \left[ \frac{\left( 1 + t^2 \right)\left( 3a \right) - 3at\left( 2t \right)}{\left( 1 + t^2 \right)^2} \right]\]

\[ \Rightarrow \frac{dx}{dt} = \left[ \frac{3a + 3a t^2 - 6a t^2}{\left( 1 + t^2 \right)^2} \right]\]

\[ \Rightarrow \frac{dx}{dt} = \left[ \frac{3a - 3a t^2}{\left( 1 - t^2 \right)^2} \right]\]

\[ \Rightarrow \frac{dx}{dt} = \frac{3a\left( 1 - t^2 \right)}{\left( 1 + t^2 \right)^2} . . . \left( i \right)\]

\[\text{ and }, y = \frac{3a t^2}{1 + t^2}\]

Differentiating it with respect to t,

\[\frac{dx}{dt} = \left[ \frac{\left( 1 + t^2 \right)\frac{d}{dt}\left( 3a t^2 \right) - 3a t^2 \frac{d}{dt}\left( 1 + t^2 \right)}{\left( 1 + t^2 \right)^2} \right] ..............\left[\text{using quotient rule } \right]\]

\[ \Rightarrow \frac{dx}{dt} = \left[ \frac{\left( 1 + t^2 \right)\left( 6at \right) - 3a t^2 \left( 2t \right)}{\left( 1 + t^2 \right)^2} \right]\]

\[ \Rightarrow \frac{dx}{dt} = \left[ \frac{6at + 6a t^3 - 6a t^3}{\left( 1 + t^2 \right)^2} \right]\]

\[ \Rightarrow \frac{dx}{dt} = \frac{6at}{\left( 1 + t^2 \right)^2} . . . \left( ii \right)\]

\[\text{ Dividing equation} \left( ii \right) by \left( i \right), \]

\[\frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{6at}{\left( 1 + t^2 \right)^2} \times \frac{\left( 1 + t^2 \right)^2}{3a\left( 1 - t^2 \right)} = \frac{2t}{1 - t^2}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Differentiation - Exercise 11.07 [पृष्ठ १०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 11 Differentiation
Exercise 11.07 | Q 8 | पृष्ठ १०३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Differentiate \[\sqrt{\frac{1 - x^2}{1 + x^2}}\] ?


Differentiate \[e^{3 x} \cos 2x\] ?


Differentiate \[\log \left( \frac{x^2 + x + 1}{x^2 - x + 1} \right)\] ?


Differentiate \[\frac{e^x \sin x}{\left( x^2 + 2 \right)^3}\] ?


If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\], prove that  \[2 x\frac{dy}{dx} = \sqrt{x} - \frac{1}{\sqrt{x}}\] ?


If \[y = e^x + e^{- x}\] prove that  \[\frac{dy}{dx} = \sqrt{y^2 - 4}\] ?


Differentiate \[\sin^{- 1} \left( 1 - 2 x^2 \right), 0 < x < 1\] ?


Differentiate \[\cos^{- 1} \left\{ \frac{\cos x + \sin x}{\sqrt{2}} \right\}, - \frac{\pi}{4} < x < \frac{\pi}{4}\] ?


Differentiate \[\sin^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?


Differentiate \[\cos^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{\sqrt{1 + x} + \sqrt{1 - x}}{2} \right\}, 0 < x < 1\] ?


Differentiate \[\tan^{- 1} \left( \frac{5 x}{1 - 6 x^2} \right), - \frac{1}{\sqrt{6}} < x < \frac{1}{\sqrt{6}}\] ?


If \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, - \frac{1}{2} < x < 0, \text{ find } \frac{dy}{dx} \] ?


If \[y = \sin^{- 1} \left( 6x\sqrt{1 - 9 x^2} \right), - \frac{1}{3\sqrt{2}} < x < \frac{1}{3\sqrt{2}}\] \[\frac{dy}{dx} \] ?


Find  \[\frac{dy}{dx}\] in the following case \[\left( x + y \right)^2 = 2axy\] ?

 


If \[\cos y = x \cos \left( a + y \right), \text{ with } \cos a \neq \pm 1, \text{ prove that } \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\] ?


Differentiate  \[\left( \sin x \right)^{\log x}\] ?


Differentiate \[\left( \sin^{- 1} x \right)^x\] ?


Find  \[\frac{dy}{dx}\] \[y = \sin x \sin 2x \sin 3x \sin 4x\] ?

 


Find  \[\frac{dy}{dx}\] \[y = x^{\sin x} + \left( \sin x \right)^x\] ?


Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\log x} + \cos^2 \left( \frac{\pi}{4} \right)\] ?


Find \[\frac{dy}{dx}\]

\[y = x^x + x^{1/x}\] ?


If \[x^y + y^x = \left( x + y \right)^{x + y} , \text{ find } \frac{dy}{dx}\] ?


If \[x^m y^n = 1\] , prove that \[\frac{dy}{dx} = - \frac{my}{nx}\] ?


\[\text{ If } \left( x - y \right) e^\frac{x}{x - y} = a,\text{  prove that y }\frac{dy}{dx} + x = 2y\] ?

Find \[\frac{dy}{dx}\] ,When \[x = a \left( 1 - \cos \theta \right) \text{ and } y = a \left( \theta + \sin \theta \right) \text{ at } \theta  = \frac{\pi}{2}\] ?


If \[x = a \left( \theta - \sin \theta \right) and, y = a \left( 1 + \cos \theta \right), \text { find } \frac{dy}{dx} \text{ at }\theta = \frac{\pi}{3} \] ?

 


Differentiate \[\sin^{- 1} \left( 2 ax \sqrt{1 - a^2 x^2} \right)\] with respect to \[\sqrt{1 - a^2 x^2}, \text{ if }-\frac{1}{\sqrt{2}} < ax < \frac{1}{\sqrt{2}}\] ?


Differentiate \[\tan^{- 1} \left( \frac{1 - x}{1 + x} \right)\] with respect to \[\sqrt{1 - x^2},\text {if} - 1 < x < 1\] ?


If \[f\left( x \right) = x + 1\] , then write the value of \[\frac{d}{dx} \left( fof \right) \left( x \right)\] ?


If \[f'\left( 1 \right) = 2 \text { and y } = f \left( \log_e x \right), \text { find} \frac{dy}{dx} \text { at }x = e\] ?


If \[y = \sec^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right)\] then write the value of \[\frac{dy}{dx} \] ?


If \[y = \log \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] __________ .


If y = ex cos x, prove that \[\frac{d^2 y}{d x^2} = 2 e^x \cos \left( x + \frac{\pi}{2} \right)\] ?


If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \cdot \frac{dy}{dx} + y \cos^2 x = 0\] ?


If x = at2, y = 2 at, then \[\frac{d^2 y}{d x^2} =\] 

 


If logy = tan–1 x, then show that `(1+x^2) (d^2y)/(dx^2) + (2x - 1) dy/dx = 0 .`


Find the height of a cylinder, which is open at the top, having a given surface area, greatest volume, and radius r.


Range of 'a' for which x3 – 12x + [a] = 0 has exactly one real root is (–∞, p) ∪ [q, ∞), then ||p| – |q|| is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×