मराठी

If Y = Sin − 1 ( 6 X √ 1 − 9 X 2 ) , − 1 3 √ 2 < X < 1 3 √ 2 D Y D X ? - Mathematics

Advertisements
Advertisements

प्रश्न

If \[y = \sin^{- 1} \left( 6x\sqrt{1 - 9 x^2} \right), - \frac{1}{3\sqrt{2}} < x < \frac{1}{3\sqrt{2}}\] \[\frac{dy}{dx} \] ?

उत्तर

We have, \[y = \sin^{- 1} \left( 6x\sqrt{1 - 9 x^2} \right), - \frac{1}{3\sqrt{2}} < x < \frac{1}{3\sqrt{2}}\]

\[So, \frac{dy}{dx} = \frac{d}{dx}\left[ \sin^{- 1} \left( 6x\sqrt{1 - 9 x^2} \right) \right]\]

\[ = \frac{d}{dx}\left[ \sin^{- 1} \left( 6x\sqrt{1 - 9 x^2} \right) \right]\]

\[ = \frac{1}{\sqrt{1 - \left( 6x\sqrt{1 - 9 x^2} \right)^2}} \times \frac{d}{dx}\left( 6x\sqrt{1 - 9 x^2} \right)\]

\[ = \frac{1}{\sqrt{1 - \left[ 36 x^2 \left( 1 - 9 x^2 \right) \right]}} \times \left( 6x\frac{d}{dx}\sqrt{1 - 9 x^2} + \sqrt{1 - 9 x^2}\frac{d}{dx}\left( 6x \right) \right)\]

\[ = \frac{1}{\sqrt{1 - 36 x^2 - 324 x^4}} \times \left( 6x \times \frac{1}{2\sqrt{1 - 9 x^2}}\frac{d}{dx}\left( 1 - 9 x^2 \right) + \sqrt{1 - 9 x^2}\left( 6 \right) \right)\]

\[ = \frac{1}{\sqrt{1 - 36 x^2 - 324 x^4}} \times \left( 6x \times \frac{1}{2\sqrt{1 - 9 x^2}} \times \left( - 18x \right) + 6\sqrt{1 - 9 x^2} \right)\]

\[ = \frac{1}{\sqrt{1 - 36 x^2 - 324 x^4}} \times \left( \frac{- 54 x^2}{\sqrt{1 - 9 x^2}} + 6\sqrt{1 - 9 x^2} \right)\]

\[ = \frac{1}{\sqrt{1 - 36 x^2 - 324 x^4}} \times \left( \frac{- 54 x^2 + 6\left( 1 - 9 x^2 \right)}{\sqrt{1 - 9 x^2}} \right)\]

\[ = \frac{- 54 x^2 + 6 - 54 x^2}{\sqrt{1 - 9 x^2}\sqrt{1 - 36 x^2 - 324 x^4}}\]

\[ = \frac{6 - 108 x^2}{\sqrt{1 - 9 x^2}\sqrt{1 - 36 x^2 - 324 x^4}}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Differentiation - Exercise 11.03 [पृष्ठ ६४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 11 Differentiation
Exercise 11.03 | Q 48 | पृष्ठ ६४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Differentiate \[e^\sqrt{\cot x}\] ?


Differentiate \[\sin^{- 1} \left( \frac{x}{\sqrt{x^2 + a^2}} \right)\] ?


Differentiate \[\cos \left( \log x \right)^2\] ?


Differentiate \[\tan^{- 1} \left\{ \frac{x}{\sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?


Differentiate \[\sin^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?


If  \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), 0 < x < 1,\] prove that  \[\frac{dy}{dx} = \frac{4}{1 + x^2}\] ?

 


If \[y \sqrt{1 - x^2} + x \sqrt{1 - y^2} = 1\] ,prove that \[\frac{dy}{dx} = - \sqrt{\frac{1 - y^2}{1 - x^2}}\] ?


Differentiate  \[\left( x^x \right) \sqrt{x}\] ?


Find  \[\frac{dy}{dx}\] \[y = e^{3x} \sin 4x \cdot 2^x\] ?

 


Find  \[\frac{dy}{dx}\] \[y = \sin x \sin 2x \sin 3x \sin 4x\] ?

 


If \[\left( \sin x \right)^y = \left( \cos y \right)^x ,\], prove that \[\frac{dy}{dx} = \frac{\log \cos y - y cot x}{\log \sin x + x \tan y}\] ?


If  \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?

 


If \[y = x \sin y\] , prove that  \[\frac{dy}{dx} = \frac{y}{x \left( 1 - x \cos y \right)}\] ?

 


Find \[\frac{dy}{dx}\] when \[x = \frac{2 t}{1 + t^2} \text{ and } y = \frac{1 - t^2}{1 + t^2}\] ?


If  \[x = 2 \cos \theta - \cos 2 \theta \text{ and y} = 2 \sin \theta - \sin 2 \theta\], prove that \[\frac{dy}{dx} = \tan \left( \frac{3 \theta}{2} \right)\] ?


Differentiate \[\tan^{- 1} \left( \frac{x - 1}{x + 1} \right)\] with respect to \[\sin^{- 1} \left( 3x - 4 x^3 \right), \text { if }- \frac{1}{2} < x < \frac{1}{2}\] ?


Differentiate \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right)\] with respect to \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right), \text { if } - \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?


If \[y = x^x , \text{ find } \frac{dy}{dx} \text{ at } x = e\] ?


If \[y = \tan^{- 1} \left( \frac{1 - x}{1 + x} \right), \text{ find} \frac{dy}{dx}\]  ?


If \[y = \log_a x, \text{ find } \frac{dy}{dx} \] ? 


If f (x) is an odd function, then write whether `f' (x)` is even or odd ?


If \[x = 3\sin t - \sin3t, y = 3\cos t - \cos3t \text{ find }\frac{dy}{dx} \text{ at } t = \frac{\pi}{3}\] ?


Given  \[f\left( x \right) = 4 x^8 , \text { then }\] _________________ .


If \[f\left( x \right) = \sqrt{x^2 - 10x + 25}\]  then the derivative of f (x) in the interval [0, 7] is ____________ .


If \[f\left( x \right) = \left| x - 3 \right| \text { and }g\left( x \right) = fof \left( x \right)\]  is equal to __________ .


If \[y = \log \sqrt{\tan x}\] then the value of \[\frac{dy}{dx}\text { at }x = \frac{\pi}{4}\] is given by __________ .


Find the second order derivatives of the following function e6x cos 3x  ?


If x = a sec θ, y = b tan θ, prove that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?


If x = a(1 − cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = - \frac{1}{a}\text { at } \theta = \frac{\pi}{2}\] ?


If y = (sin−1 x)2, prove that (1 − x2)

\[\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?


If \[y = \left[ \log \left( x + \sqrt{x^2 + 1} \right) \right]^2\] show that \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 2\] ?


If x = 2 cos t − cos 2ty = 2 sin t − sin 2t, find \[\frac{d^2 y}{d x^2}\text{ at } t = \frac{\pi}{2}\] ?


\[\text { If x } = a \sin t - b \cos t, y = a \cos t + b \sin t, \text { prove that } \frac{d^2 y}{d x^2} = - \frac{x^2 + y^2}{y^3} \] ?


If x = f(t) and y = g(t), then write the value of \[\frac{d^2 y}{d x^2}\] ?


If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =


If y = sin (m sin−1 x), then (1 − x2) y2 − xy1 is equal to


If \[y = \log_e \left( \frac{x}{a + bx} \right)^x\] then x3 y2 =

 


If \[y^\frac{1}{n} + y^{- \frac{1}{n}} = 2x, \text { then find } \left( x^2 - 1 \right) y_2 + x y_1 =\] ?


The number of road accidents in the city due to rash driving, over a period of 3 years, is given in the following table:

Year Jan-March April-June July-Sept. Oct.-Dec.
2010 70 60 45 72
2011 79 56 46 84
2012 90 64 45 82

Calculate four quarterly moving averages and illustrate them and original figures on one graph using the same axes for both.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×