मराठी

If Y = [ Log ( X + √ X 2 + 1 ) ] 2 Show that ( 1 + X 2 ) D 2 Y D X 2 + X D Y D X = 2 ? - Mathematics

Advertisements
Advertisements

प्रश्न

If \[y = \left[ \log \left( x + \sqrt{x^2 + 1} \right) \right]^2\] show that \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 2\] ?

उत्तर

Here,

\[y = \left[ \log\left( x + \sqrt{x^2 + 1} \right) \right]^2 \]

\[\text { Differentiating w . r . t . x, we get }\]

\[\frac{d y}{d x} = \frac{2\log\left( x + \sqrt{x^2 + 1} \right)}{\left( x + \sqrt{x^2 + 1} \right)} \times \left( 1 + \frac{2x}{2\sqrt{x^2 + 1}} \right)\]

\[ \Rightarrow \frac{d y}{d x} = \frac{2\log\left( x + \sqrt{x^2 + 1} \right)}{\left( x + \sqrt{x^2 + 1} \right)} \times \left( \frac{\sqrt{x^2 + 1} + x}{\sqrt{x^2 + 1}} \right)\]

\[ \Rightarrow \frac{d y}{d x} = \frac{2\log\left( x + \sqrt{x^2 + 1} \right)}{\sqrt{x^2 + 1}}\]

\[\text { Differentiating again w . r . t . x, we get }\]

\[\frac{d^2 y}{d x^2} = \frac{2 - \frac{2x\log\left( x + \sqrt{x^2 + 1} \right)}{\sqrt{x^2 + 1}}}{x^2 + 1}\]

\[ \Rightarrow \frac{d^2 y}{d x^2} = \frac{2 - x\frac{dy}{dx}}{x^2 + 1}\]

\[ \Rightarrow \left( x^2 + 1 \right)\frac{d^2 y}{d x^2} = 2 - x\frac{dy}{dx}\]

\[ \Rightarrow \left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 2\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 12: Higher Order Derivatives - Exercise 12.1 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 12 Higher Order Derivatives
Exercise 12.1 | Q 27 | पृष्ठ १७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum, when the angle between them is 60º.


Differentiate the following functions from first principles e3x.


Differentiate the following functions from first principles log cosec x ?


Differentiate sin (3x + 5) ?


Differentiate \[3^{e^x}\] ?


Differentiate \[\sqrt{\frac{1 + x}{1 - x}}\] ?


Differentiate \[3 e^{- 3x} \log \left( 1 + x \right)\] ?


If \[y = x \sin^{- 1} x + \sqrt{1 - x^2}\] ,prove that \[\frac{dy}{dx} = \sin^{- 1} x\] ?


Differentiate  \[\sin^{- 1} \left\{ \sqrt{\frac{1 - x}{2}} \right\}, 0 < x < 1\]  ?


Differentiate \[\tan^{- 1} \left\{ \frac{x}{\sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?


If  \[y = \cot^{- 1} \left\{ \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right\}\],  show that \[\frac{dy}{dx}\] is independent of x. ? 

 


If  \[y = se c^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right), x > 0 . \text{ Find} \frac{dy}{dx}\] ?

 


Find  \[\frac{dy}{dx}\] in the following case \[\left( x^2 + y^2 \right)^2 = xy\] ?

 


If \[\log \sqrt{x^2 + y^2} = \tan^{- 1} \left( \frac{y}{x} \right)\] Prove that \[\frac{dy}{dx} = \frac{x + y}{x - y}\] ?


If \[e^x + e^y = e^{x + y} , \text{ prove that } \frac{dy}{dx} = - \frac{e^x \left( e^y - 1 \right)}{e^y \left( e^x - 1 \right)} or \frac{dy}{dx} + e^{y - x} = 0\] ?


Differentiate \[e^{x \log x}\] ?


Differentiate \[\left( \sin^{- 1} x \right)^x\] ?


Find  \[\frac{dy}{dx}\] \[y = \sin x \sin 2x \sin 3x \sin 4x\] ?

 


Find \[\frac{dy}{dx}\] \[y = x^{\cos x} + \left( \sin x \right)^{\tan x}\] ?


If \[y^x = e^{y - x}\] ,prove that \[\frac{dy}{dx} = \frac{\left( 1 + \log y \right)^2}{\log y}\] ?


If \[y = \left( \sin x - \cos x \right)^{\sin x - \cos x} , \frac{\pi}{4} < x < \frac{3\pi}{4}, \text{ find} \frac{dy}{dx}\] ?


Find \[\frac{dy}{dx}\], when \[x = a \left( \cos \theta + \theta \sin \theta \right) \text{ and }y = a \left( \sin \theta - \theta \cos \theta \right)\] ?


If \[x = e^{\cos 2 t} \text{ and y }= e^{\sin 2 t} ,\] prove that \[\frac{dy}{dx} = - \frac{y \log x}{x \log y}\] ?


If  \[x = \frac{1 + \log t}{t^2}, y = \frac{3 + 2\log t}{t}, \text { find } \frac{dy}{dx}\] ?


Differentiate (log x)x with respect to log x ?


Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2}, - \frac{1}{2 \sqrt{2}} \right)\] ?


Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to  \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( 0, \frac{1}{\sqrt{2}} \right)\] ?


Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right), \text { if }- \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?


Differentiate \[\sin^{- 1} \left( 2 ax \sqrt{1 - a^2 x^2} \right)\] with respect to \[\sqrt{1 - a^2 x^2}, \text{ if }-\frac{1}{\sqrt{2}} < ax < \frac{1}{\sqrt{2}}\] ?


If \[y = \sin^{- 1} x + \cos^{- 1} x\] ,find \[\frac{dy}{dx}\] ?


If \[- \frac{\pi}{2} < x < 0 \text{ and y } = \tan^{- 1} \sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}, \text{ find } \frac{dy}{dx}\] ?


If \[y = \sqrt{\sin x + y}, \text { then }\frac{dy}{dx} \text { equals }\] ______________ .


If \[y = \tan^{- 1} \left( \frac{\sin x + \cos x}{\cos x - \sin x} \right), \text { then  } \frac{dy}{dx}\] is equal to ___________ .


If y = 3 cos (log x) + 4 sin (log x), prove that x2y2 + xy1 + y = 0 ?


If y = 500 e7x + 600 e−7x, show that \[\frac{d^2 y}{d x^2} = 49y\] ?


\[\text { Find A and B so that y = A } \sin3x + B \cos3x \text { satisfies the equation }\]

\[\frac{d^2 y}{d x^2} + 4\frac{d y}{d x} + 3y = 10 \cos3x \] ?


If y = x + ex, find \[\frac{d^2 x}{d y^2}\] ?


If \[y = \tan^{- 1} \left\{ \frac{\log_e \left( e/ x^2 \right)}{\log_e \left( e x^2 \right)} \right\} + \tan^{- 1} \left( \frac{3 + 2 \log_e x}{1 - 6 \log_e x} \right)\], then \[\frac{d^2 y}{d x^2} =\]

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×