Advertisements
Advertisements
प्रश्न
If \[y = \tan^{- 1} \left( \frac{\sin x + \cos x}{\cos x - \sin x} \right), \text { then } \frac{dy}{dx}\] is equal to ___________ .
पर्याय
`1/2`
0
1
none of these
उत्तर
`1`
\[\text { We have, y } = \tan^{- 1} \left( \frac{\sin x + \cos x}{\cos x - \sin x} \right)\]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{1 + \left( \frac{\sin x + \cos x}{\cos x - \sin x} \right)^2}\frac{d}{dx}\left( \frac{\sin x + \cos x}{\cos x - \sin x} \right)\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\left( \cos x - \sin x \right)^2}{\left( \cos x - \sin x \right)^2 + \left( \sin x + \cos x \right)^2}\left[ \frac{\left( \cos x - \sin x \right)\frac{d}{dx}\left( \sin x + \cos x \right) - \left( \sin x + \cos x \right)\frac{d}{dx}\left( \cos x - \sin x \right)}{\left( \cos x - \sin x \right)^2} \right]\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\left( \cos x - \sin x \right)^2}{\left( \cos x - \sin x \right)^2 + \left( \sin x + \cos x \right)^2}\left[ \frac{\left( \cos x - \sin x \right)\left( \cos x - \sin x \right) - \left( \sin x + \cos x \right)\left( - \sin x - \cos x \right)}{\left( \cos x - \sin x \right)^2} \right]\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\left( \cos x - \sin x \right)^2}{\left( \cos x - \sin x \right)^2 + \left( \sin x + \cos x \right)^2}\left[ \frac{\left( \cos x - \sin x \right)\left( \cos x - \sin x \right) + \left( \sin x + \cos x \right)\left( \sin x + \cos x \right)}{\left( \cos x - \sin x \right)^2} \right]\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\left( \cos x - \sin x \right)^2}{\left( \cos x - \sin x \right)^2 + \left( \sin x + \cos x \right)^2} \times \frac{\left( \cos x - \sin x \right)^2 + \left( \sin x + \cos x \right)^2}{\left( \cos x - \sin x \right)^2}\]
\[ \Rightarrow \frac{dy}{dx} = 1\]
APPEARS IN
संबंधित प्रश्न
Differentiate tan2 x ?
Differentiate log7 (2x − 3) ?
Differentiate \[\sqrt{\frac{1 + x}{1 - x}}\] ?
Differentiate \[\frac{e^x \log x}{x^2}\] ?
Differentiate \[\sqrt{\tan^{- 1} \left( \frac{x}{2} \right)}\] ?
Differentiate \[e^x \log \sin 2x\] ?
Differentiate \[\frac{e^x \sin x}{\left( x^2 + 2 \right)^3}\] ?
Differentiate \[\cos \left( \log x \right)^2\] ?
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\], prove that \[2 x\frac{dy}{dx} = \sqrt{x} - \frac{1}{\sqrt{x}}\] ?
If \[y = x \sin^{- 1} x + \sqrt{1 - x^2}\] ,prove that \[\frac{dy}{dx} = \sin^{- 1} x\] ?
Differentiate \[\cos^{- 1} \left\{ 2x\sqrt{1 - x^2} \right\}, \frac{1}{\sqrt{2}} < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{x}{1 + 6 x^2} \right)\] ?
If \[y = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), x > 0\] ,prove that \[\frac{dy}{dx} = \frac{4}{1 + x^2} \] ?
Find \[\frac{dy}{dx}\] in the following case: \[y^3 - 3x y^2 = x^3 + 3 x^2 y\] ?
Find \[\frac{dy}{dx}\] in the following case \[x^{2/3} + y^{2/3} = a^{2/3}\] ?
Find \[\frac{dy}{dx}\] in the following case \[\left( x^2 + y^2 \right)^2 = xy\] ?
If \[xy = 1\] prove that \[\frac{dy}{dx} + y^2 = 0\] ?
Differentiate \[x^{\sin x}\] ?
If \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?
If \[\left( \sin x \right)^y = x + y\] , prove that \[\frac{dy}{dx} = \frac{1 - \left( x + y \right) y \cot x}{\left( x + y \right) \log \sin x - 1}\] ?
If \[y = \sqrt{x + \sqrt{x + \sqrt{x + . . . to \infty ,}}}\] prove that \[\frac{dy}{dx} = \frac{1}{2 y - 1}\] ?
If \[x = e^{\cos 2 t} \text{ and y }= e^{\sin 2 t} ,\] prove that \[\frac{dy}{dx} = - \frac{y \log x}{x \log y}\] ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( 0, \frac{1}{\sqrt{2}} \right)\] ?
Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { if } 0 < x < 1\] ?
Differentiate \[\sin^{- 1} \left( 2 ax \sqrt{1 - a^2 x^2} \right)\] with respect to \[\sqrt{1 - a^2 x^2}, \text{ if }-\frac{1}{\sqrt{2}} < ax < \frac{1}{\sqrt{2}}\] ?
If \[f\left( x \right) = x + 1\] , then write the value of \[\frac{d}{dx} \left( fof \right) \left( x \right)\] ?
If \[y = \log \sqrt{\tan x}, \text{ write } \frac{dy}{dx} \] ?
If \[y = \sec^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right)\] then write the value of \[\frac{dy}{dx} \] ?
If \[u = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ and v} = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\] where \[- 1 < x < 1\], then write the value of \[\frac{du}{dv}\] ?
The derivative of the function \[\cot^{- 1} \left| \left( \cos 2 x \right)^{1/2} \right| \text{ at } x = \pi/6 \text{ is }\] ______ .
If x = a(1 − cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = - \frac{1}{a}\text { at } \theta = \frac{\pi}{2}\] ?
If y = tan−1 x, show that \[\left( 1 + x^2 \right) \frac{d^2 y}{d x^2} + 2x\frac{dy}{dx} = 0\] ?
If y = ae2x + be−x, show that, \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\] ?
\[\text{ If x } = a\left( \cos t + \log \tan\frac{t}{2} \right) \text { and y } = a\left( \sin t \right), \text { evaluate } \frac{d^2 y}{d x^2} \text { at t } = \frac{\pi}{3} \] ?
\[\text { If }y = A e^{- kt} \cos\left( pt + c \right), \text { prove that } \frac{d^2 y}{d t^2} + 2k\frac{d y}{d t} + n^2 y = 0, \text { where } n^2 = p^2 + k^2 \] ?
If \[y = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!}\] .....to ∞, then write \[\frac{d^2 y}{d x^2}\] in terms of y ?
If y = axn+1 + bx−n, then \[x^2 \frac{d^2 y}{d x^2} =\]
If x = t2, y = t3, then \[\frac{d^2 y}{d x^2} =\]
Let f(x) be a polynomial. Then, the second order derivative of f(ex) is