Advertisements
Advertisements
प्रश्न
Find \[\frac{dy}{dx}\] in the following case \[\left( x^2 + y^2 \right)^2 = xy\] ?
उत्तर
\[\text{We have, } \left( x^2 + y^2 \right) = xy\]
Differentiating with respect to x, we get,
\[\Rightarrow \frac{d}{dx}\left[ \left( x^2 + y^2 \right)^2 \right] = \frac{d}{dx}\left( xy \right)\]
\[ \Rightarrow 2\left( x^2 + y^2 \right)\frac{d}{dx}\left( x^2 + y^2 \right) = x\frac{d y}{d x} + y\frac{d}{dx}\left( x \right) \]
\[ \Rightarrow 2\left( x^2 + y^2 \right)\left( 2x + 2y\frac{d y}{d x} \right) = x\frac{d y}{d x} + y\left( 1 \right)\]
\[ \Rightarrow 4x\left( x^2 + y^2 \right) + 4y\left( x^2 + y^2 \right)\frac{d y}{d x} = x\frac{d y}{d x} + y\]
\[ \Rightarrow 4y\left( x^2 + y^2 \right)\frac{d y}{d x} - x\frac{d y}{d x} = y - 4x\left( x^2 + y^2 \right)\]
\[ \Rightarrow \frac{d y}{d x}\left[ 4y\left( x^2 + y^2 \right) - x \right] = y - 4x\left( x^2 + y^2 \right)\]
\[ \Rightarrow \frac{d y}{d x} = \frac{y - 4x\left( x^2 + y^2 \right)}{4y\left( x^2 + y^2 \right) - x}\]
\[ \Rightarrow \frac{d y}{d x} = \frac{4x\left( x^2 + y^2 \right) - y}{x - 4y\left( x^2 + y^2 \right)}\]
APPEARS IN
संबंधित प्रश्न
Differentiate the following functions from first principles \[e^\sqrt{2x}\].
Differentiate sin (3x + 5) ?
Differentiate \[3^{x^2 + 2x}\] ?
Differentiate \[\sin \left( 2 \sin^{- 1} x \right)\] ?
Differentiate \[\log \left( \cos x^2 \right)\] ?
Differentiate \[\sin^{- 1} \left\{ \sqrt{\frac{1 - x}{2}} \right\}, 0 < x < 1\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{\sin x + \cos x}{\sqrt{2}} \right\}, - \frac{3 \pi}{4} < x < \frac{\pi}{4}\] ?
Find \[\frac{dy}{dx}\] in the following case \[x^5 + y^5 = 5 xy\] ?
Differentiate \[\left( \sin x \right)^{\log x}\] ?
Differentiate \[{10}^{ \log \sin x }\] ?
Differentiate \[{10}^\left( {10}^x \right)\] ?
Find \[\frac{dy}{dx}\] \[y = \sin x \sin 2x \sin 3x \sin 4x\] ?
If \[x^{13} y^7 = \left( x + y \right)^{20}\] prove that \[\frac{dy}{dx} = \frac{y}{x}\] ?
If \[x^m y^n = 1\] , prove that \[\frac{dy}{dx} = - \frac{my}{nx}\] ?
Find the derivative of the function f (x) given by \[f\left( x \right) = \left( 1 + x \right) \left( 1 + x^2 \right) \left( 1 + x^4 \right) \left( 1 + x^8 \right)\] and hence find `f' (1)` ?
If \[\frac{dy}{dx}\] when \[x = a \cos \theta \text{ and } y = b \sin \theta\] ?
Find \[\frac{dy}{dx}\] ,when \[x = \frac{e^t + e^{- t}}{2} \text{ and } y = \frac{e^t - e^{- t}}{2}\] ?
If \[x = a\left( t + \frac{1}{t} \right) \text{ and y } = a\left( t - \frac{1}{t} \right)\] ,prove that \[\frac{dy}{dx} = \frac{x}{y}\]?
\[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cot^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right),\text { if }0 < x < 1\] ?
If \[y = x \left| x \right|\] , find \[\frac{dy}{dx} \text{ for } x < 0\] ?
If \[x = a \left( \theta + \sin \theta \right), y = a \left( 1 + \cos \theta \right), \text{ find} \frac{dy}{dx}\] ?
If \[y = \log_a x, \text{ find } \frac{dy}{dx} \] ?
If f (x) is an odd function, then write whether `f' (x)` is even or odd ?
If \[y = \left( 1 + \frac{1}{x} \right)^x , \text{ then} \frac{dy}{dx} =\] ____________ .
If \[x^y = e^{x - y} ,\text{ then } \frac{dy}{dx}\] is __________ .
\[\frac{d}{dx} \left\{ \tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right) \right\} \text { equals }\] ______________ .
Find the second order derivatives of the following function x3 + tan x ?
Find the second order derivatives of the following function sin (log x) ?
If y = e−x cos x, show that \[\frac{d^2 y}{d x^2} = 2 e^{- x} \sin x\] ?
If y = 500 e7x + 600 e−7x, show that \[\frac{d^2 y}{d x^2} = 49y\] ?
\[\text { If x } = \cos t + \log \tan\frac{t}{2}, y = \sin t, \text { then find the value of } \frac{d^2 y}{d t^2} \text { and } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?
If x = a cos nt − b sin nt and \[\frac{d^2 x}{dt} = \lambda x\] then find the value of λ ?
If \[y = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!}\] .....to ∞, then write \[\frac{d^2 y}{d x^2}\] in terms of y ?
If x = at2, y = 2 at, then \[\frac{d^2 y}{d x^2} =\]
Differentiate sin(log sin x) ?