मराठी

If y find If y=1+α(1x−α)+β/x(1x−α)(1x−β)+γ/x2(1x−α)(1x−β)(1x−γ), find dydx is: - Mathematics

Advertisements
Advertisements

प्रश्न

\[\text{If y} = 1 + \frac{\alpha}{\left( \frac{1}{x} - \alpha \right)} + \frac{{\beta}/{x}}{\left( \frac{1}{x} - \alpha \right)\left( \frac{1}{x} - \beta \right)} + \frac{{\gamma}/{x^2}}{\left( \frac{1}{x} - \alpha \right)\left( \frac{1}{x} - \beta \right)\left( \frac{1}{x} - \gamma \right)}, \text{ find } \frac{dy}{dx}\] is:

पर्याय

  • `y (alpha/(alpha-x) + beta/(beta-x) + gamma/(gamma-x))`

  • `y/x (alpha/(1/(x-alpha)) + beta/(1/(x-beta)) + gamma/(1/(x-gamma)))`

  • `y (alpha/(1/(x-alpha)) + beta/(1/(x-beta)) + gamma/(1/(x-gamma)))`

  • `y/x ((alpha/x)/(1/(x-alpha)) + (beta/x)/(1/(x-beta)) + (gamma/x)/(1/(x-gamma)))`

MCQ
बेरीज

उत्तर

`y = (1/x)/(1/x - alpha) + (beta/x)/((1/x - alpha)(1/x - beta)) + (gamma/x^2)/((1/x - alpha)(1/x - beta)(1/x - gamma))`

`=(1/x^2)/((1/x - alpha)(1/x-beta)) + (gamma/x^2)/((1/x - alpha)(1/x-beta)(1/x - gamma))`

`y = (1/x^3)/((1/x - alpha)(1/x - beta))`

`=> log y = -3 log x (1/x - alpha) - log (1/x - beta) - log (1/x - gamma)`

`1/y dy/dx = (-3)/x - 1/(1/x - alpha) (-1/x - alpha) - 1/(1/x - beta) ((-1)/x^2) - 1/(1/x - gamma) (-1/x^2)`

`y = y/x [-3 + 1/x/1/x - alpha + 1/x/(1/x - beta) + 1/x/(1/x - gamma)]`

`y/x (alpha/(1/(x-alpha)) + beta/(1/(x-beta)) + gamma/(1/(x-gamma)))`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Differentiation - Exercise 11.05 [पृष्ठ ९०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 11 Differentiation
Exercise 11.05 | Q 61 | पृष्ठ ९०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

 

If y = xx, prove that `(d^2y)/(dx^2)−1/y(dy/dx)^2−y/x=0.`

 

Differentiate the following functions from first principles e3x.


Differentiate the following functions from first principles ecos x.


Differentiate the following functions from first principles log cosec x ?


Differentiate etan x ?


Differentiate \[e^{\tan^{- 1}} \sqrt{x}\] ?


Differentiate \[\sqrt{\tan^{- 1} \left( \frac{x}{2} \right)}\] ?


Differentiate \[\frac{2^x \cos x}{\left( x^2 + 3 \right)^2}\] ?


If \[y = x \sin^{- 1} x + \sqrt{1 - x^2}\] ,prove that \[\frac{dy}{dx} = \sin^{- 1} x\] ?


If \[y = \sqrt{x^2 + a^2}\] prove that  \[y\frac{dy}{dx} - x = 0\] ?


Differentiate \[\tan^{- 1} \left\{ \frac{x}{1 + \sqrt{1 - x^2}} \right\}, - 1 < x < 1\] ?


Differentiate \[\cos^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?


Differentiate \[\tan^{- 1} \left( \frac{\sin x}{1 + \cos x} \right), - \pi < x < \pi\] ?


Differentiate \[\cos^{- 1} \left( \frac{1 - x^{2n}}{1 + x^{2n}} \right), < x < \infty\] ?


Differentiate \[\tan^{- 1} \left( \frac{a + bx}{b - ax} \right)\] ?


If the derivative of tan−1 (a + bx) takes the value 1 at x = 0, prove that 1 + a2 = b ?


Find  \[\frac{dy}{dx}\] in the following case \[\left( x^2 + y^2 \right)^2 = xy\] ?

 


If \[x y^2 = 1,\] prove that \[2\frac{dy}{dx} + y^3 = 0\] ?


If \[y = \left\{ \log_{\cos x} \sin x \right\} \left\{ \log_{\sin x} \cos x \right\}^{- 1} + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right), \text{ find } \frac{dy}{dx} \text{ at }x = \frac{\pi}{4}\] ?


Differentiate \[\left( x \cos x \right)^x + \left( x \sin x \right)^{1/x}\] ?


Differentiate  \[x^{x^2 - 3} + \left( x - 3 \right)^{x^2}\] ?


Find \[\frac{dy}{dx}\] \[y = x^{\log x }+ \left( \log x \right)^x\] ?


If  \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?

 


If \[y = \left( \sin x - \cos x \right)^{\sin x - \cos x} , \frac{\pi}{4} < x < \frac{3\pi}{4}, \text{ find} \frac{dy}{dx}\] ?


If \[y^x + x^y + x^x = a^b\] ,find \[\frac{dy}{dx}\] ?


If  \[\left( \cos x \right)^y = \left( \cos y \right)^x , \text{ find } \frac{dy}{dx}\] ?

 


If  \[x = a\left( t + \frac{1}{t} \right) \text{ and y } = a\left( t - \frac{1}{t} \right)\] ,prove that  \[\frac{dy}{dx} = \frac{x}{y}\]?

 


Differentiate \[\left( \cos x \right)^{\sin x }\] with respect to \[\left( \sin x \right)^{\cos x }\]?


Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text{ if } - 1 < x < 1\] ?


If \[f\left( 1 \right) = 4, f'\left( 1 \right) = 2\] find the value of the derivative of  \[\log \left( f\left( e^x \right) \right)\] w.r. to x at the point x = 0 ?

 


If \[y = \sqrt{\sin x + y}, \text { then }\frac{dy}{dx} \text { equals }\] ______________ .


Find the second order derivatives of the following function tan−1 x ?


Find the second order derivatives of the following function  log (log x)  ?


If y = log (sin x), prove that \[\frac{d^3 y}{d x^3} = 2 \cos \ x \ {cosec}^3 x\] ?


If y = ae2x + be−x, show that, \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\] ?


If y log (1 + cos x), prove that \[\frac{d^3 y}{d x^3} + \frac{d^2 y}{d x^2} \cdot \frac{dy}{dx} = 0\] ?


If \[y = \tan^{- 1} \left\{ \frac{\log_e \left( e/ x^2 \right)}{\log_e \left( e x^2 \right)} \right\} + \tan^{- 1} \left( \frac{3 + 2 \log_e x}{1 - 6 \log_e x} \right)\], then \[\frac{d^2 y}{d x^2} =\]

 


If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×