Advertisements
Advertisements
प्रश्न
Differentiate \[\tan^{- 1} \left\{ \frac{x}{1 + \sqrt{1 - x^2}} \right\}, - 1 < x < 1\] ?
उत्तर
\[\text{ Let, y } = \tan^{- 1} \left\{ \frac{x}{1 + \sqrt{1 - x^2}} \right\}\]
\[\text{Put x } = \sin\theta\]
\[ y = \tan^{- 1} \left\{ \frac{\sin\theta}{1 + \sqrt{1 - \sin^2 \theta}} \right\}\]
\[ y = \tan^{- 1} \left( \frac{\sin\theta}{1 + \cos\theta} \right) \]
\[ y = \tan^{- 1} \left\{ \frac{2 \sin\frac{\theta}{2}\cos\frac{\theta}{2}}{2 \cos^2 \frac{\theta}{2}} \right\}\]
\[ y = \tan^{- 1} \left\{ \tan \frac{\theta}{2} \right\} . . . \left( i \right)\]
\[\text{ Here }, - 1 < x < 1\]
\[ \Rightarrow - 1 < \sin\theta < 1\]
\[ \Rightarrow - \frac{\pi}{2} < \theta < \frac{\pi}{2}\]
\[ \Rightarrow - \frac{\pi}{4} < \frac{\theta}{2} < \frac{\pi}{4}\]
\[\text{ So, from equation } \left( i \right), \]
\[ y = \frac{\theta}{2} \left[ Since, \tan^{- 1} \left( \tan\theta \right) = \theta, \text{ if }\theta \in \left[ - \frac{\pi}{2}, \frac{\pi}{2} \right] \right]\]
\[ y = \frac{1}{2} \sin^{- 1} x \left[ \text{ Since, x } = \sin\theta \right]\]
\[\text{ Differentiating it with respect to x }, \]
\[\frac{d y}{d x} = \frac{1}{2\sqrt{1 - x^2}}\]
APPEARS IN
संबंधित प्रश्न
Differentiate the following functions from first principles ecos x.
Differentiate sin (log x) ?
Differentiate \[e^{\sin} \sqrt{x}\] ?
Differentiate \[3^{x \log x}\] ?
Differentiate \[e^{\tan 3 x} \] ?
Differentiate \[\tan \left( e^{\sin x }\right)\] ?
Differentiate \[\frac{e^x \log x}{x^2}\] ?
Differentiate \[\frac{e^{2x} + e^{- 2x}}{e^{2x} - e^{- 2x}}\] ?
Differentiate \[\sin \left( 2 \sin^{- 1} x \right)\] ?
Differentiate \[\sqrt{\tan^{- 1} \left( \frac{x}{2} \right)}\] ?
Differentiate \[e^x \log \sin 2x\] ?
\[\log\left\{ \cot\left( \frac{\pi}{4} + \frac{x}{2} \right) \right\}\] ?
Differentiate \[\log \left( \cos x^2 \right)\] ?
If \[y = \frac{1}{2} \log \left( \frac{1 - \cos 2x }{1 + \cos 2x} \right)\] , prove that \[\frac{ dy }{ dx } = 2 \text{cosec }2x \] ?
If \[y = \sqrt{a^2 - x^2}\] prove that \[y\frac{dy}{dx} + x = 0\] ?
Differentiate \[\tan^{- 1} \left( \frac{4x}{1 - 4 x^2} \right), - \frac{1}{2} < x < \frac{1}{2}\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{\sqrt{1 + x} + \sqrt{1 - x}}{2} \right\}, 0 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + b \tan x}{b - a \tan x} \right)\] ?
If \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), 0 < x < 1,\] prove that \[\frac{dy}{dx} = \frac{4}{1 + x^2}\] ?
Find \[\frac{dy}{dx}\] in the following case \[\tan^{- 1} \left( x^2 + y^2 \right) = a\] ?
If \[\tan \left( x + y \right) + \tan \left( x - y \right) = 1, \text{ find} \frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \sin x \right)^{\cos x} + \left( \cos x \right)^{\sin x}\] ?
If \[x^y + y^x = \left( x + y \right)^{x + y} , \text{ find } \frac{dy}{dx}\] ?
Find the derivative of the function f (x) given by \[f\left( x \right) = \left( 1 + x \right) \left( 1 + x^2 \right) \left( 1 + x^4 \right) \left( 1 + x^8 \right)\] and hence find `f' (1)` ?
If \[x = e^{\cos 2 t} \text{ and y }= e^{\sin 2 t} ,\] prove that \[\frac{dy}{dx} = - \frac{y \log x}{x \log y}\] ?
Differentiate \[\left( \cos x \right)^{\sin x }\] with respect to \[\left( \sin x \right)^{\cos x }\]?
If \[\pi \leq x \leq 2\pi \text { and y } = \cos^{- 1} \left( \cos x \right), \text { find } \frac{dy}{dx}\] ?
If \[y = \tan^{- 1} \left( \frac{1 - x}{1 + x} \right), \text{ find} \frac{dy}{dx}\] ?
If \[\left| x \right| < 1 \text{ and y} = 1 + x + x^2 + . . \] to ∞, then find the value of \[\frac{dy}{dx}\] ?
If \[f\left( x \right) = \log \left\{ \frac{u \left( x \right)}{v \left( x \right)} \right\}, u \left( 1 \right) = v \left( 1 \right) \text{ and }u' \left( 1 \right) = v' \left( 1 \right) = 2\] , then find the value of `f' (1)` ?
If \[y = \log \left| 3x \right|, x \neq 0, \text{ find } \frac{dy}{dx} \] ?
If \[y = \sqrt{\sin x + y},\text { then } \frac{dy}{dx} =\] __________ .
If y = 500 e7x + 600 e−7x, show that \[\frac{d^2 y}{d x^2} = 49y\] ?
If y = cosec−1 x, x >1, then show that \[x\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + \left( 2 x^2 - 1 \right)\frac{dy}{dx} = 0\] ?
If \[x = 3 \cos t - 2 \cos^3 t, y = 3\sin t - 2 \sin^3 t,\] find \[\frac{d^2 y}{d x^2} \] ?
If x = f(t) and y = g(t), then write the value of \[\frac{d^2 y}{d x^2}\] ?
If \[y = \log_e \left( \frac{x}{a + bx} \right)^x\] then x3 y2 =
If y = xn−1 log x then x2 y2 + (3 − 2n) xy1 is equal to
If xy − loge y = 1 satisfies the equation \[x\left( y y_2 + y_1^2 \right) - y_2 + \lambda y y_1 = 0\]