मराठी

If Y = Tan − 1 ( 1 − X 1 + X ) , Find D Y D X ? - Mathematics

Advertisements
Advertisements

प्रश्न

If \[y = \tan^{- 1} \left( \frac{1 - x}{1 + x} \right), \text{ find} \frac{dy}{dx}\]  ?

उत्तर

\[\text{ We have, y } = \tan^{- 1} \left( \frac{1 - x}{1 + x} \right)\]

\[\Rightarrow \frac{dy}{dx} = \frac{1}{1 + \left( \frac{1 - x}{1 + x} \right)^2}\frac{d}{dx}\left( \frac{1 - x}{1 + x} \right)\]

\[ \Rightarrow \frac{dy}{dx} = \frac{\left( 1 + x \right)^2}{1 + x^2 + 2x + 1 + x^2 - 2x}\left[ \frac{\left( 1 + x \right)\frac{d}{dx}\left( 1 - x \right) - \left( 1 - x \right)\frac{d}{dx}\left( 1 + x \right)}{\left( 1 + x \right)^2} \right] \left[ \text{ using quotient rule } \right]\]

\[ \Rightarrow \frac{dy}{dx} = \frac{\left( 1 + x \right)^2}{2 x^2 + 2}\left[ \frac{\left( 1 + x \right)\left( - 1 \right) - \left( 1 - x \right)\left( 1 \right)}{\left( 1 + x \right)} \right]\]

\[ \Rightarrow \frac{dy}{dx} = \frac{\left( 1 + x \right)^2}{2\left( x^2 + 1 \right)}\left( \frac{- x - 1 - 1 + x}{\left( 1 + x \right)^2} \right)\]

\[ \Rightarrow \frac{dy}{dx} = \frac{\left( 1 + x \right)^2}{2\left( x^2 + 1 \right)} \times \frac{- 2}{\left( 1 + x \right)^2}\]

\[ \Rightarrow \frac{dy}{dx} = - \frac{1}{x^2 + 1}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Differentiation - Exercise 11.09 [पृष्ठ ११८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 11 Differentiation
Exercise 11.09 | Q 17 | पृष्ठ ११८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Prove that `y=(4sintheta)/(2+costheta)-theta `


If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum, when the angle between them is 60º.


Differentiate the following functions from first principles sin−1 (2x + 3) ?


Differentiate sin (log x) ?


Differentiate tan 5x° ?


Differentiate (log sin x)?


Differentiate \[\log \left( \frac{\sin x}{1 + \cos x} \right)\] ?


Differentiate \[\log \sqrt{\frac{1 - \cos x}{1 + \cos x}}\] ?


Differentiate \[\sin^2 \left\{ \log \left( 2x + 3 \right) \right\}\] ?


Differentiate \[3 e^{- 3x} \log \left( 1 + x \right)\] ?


Differentiate \[\sin^{- 1} \left( 2 x^2 - 1 \right), 0 < x < 1\]  ?


Differentiate \[\sin^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?


Differentiate \[\tan^{- 1} \left( \frac{2 a^x}{1 - a^{2x}} \right), a > 1, - \infty < x < 0\] ?


If \[x y^2 = 1,\] prove that \[2\frac{dy}{dx} + y^3 = 0\] ?


If \[\sin \left( xy \right) + \frac{y}{x} = x^2 - y^2 , \text{ find}  \frac{dy}{dx}\] ?


If  \[\tan \left( x + y \right) + \tan \left( x - y \right) = 1, \text{ find}  \frac{dy}{dx}\] ?


Differentiate \[\left( \sin^{- 1} x \right)^x\] ?


Differentiate \[x^{\tan^{- 1} x }\]  ?


Find  \[\frac{dy}{dx}\] \[y = e^{3x} \sin 4x \cdot 2^x\] ?

 


If  \[\left( \sin x \right)^y = x + y\] , prove that \[\frac{dy}{dx} = \frac{1 - \left( x + y \right) y \cot x}{\left( x + y \right) \log \sin x - 1}\] ?

 


\[\text{ If }y = x^{\tan x} + \sqrt{\frac{x^2 + 1}{2}}, \text{ find} \frac{dy}{dx}\] ?

 


Find \[\frac{dy}{dx}\],when \[x = a e^\theta \left( \sin \theta - \cos \theta \right), y = a e^\theta \left( \sin \theta + \cos \theta \right)\] ?


Find \[\frac{dy}{dx}\] , when  \[x = \cos^{- 1} \frac{1}{\sqrt{1 + t^2}} \text{ and y } = \sin^{- 1} \frac{t}{\sqrt{1 + t^2}}, t \in R\] ?


If  \[x = 2 \cos \theta - \cos 2 \theta \text{ and y} = 2 \sin \theta - \sin 2 \theta\], prove that \[\frac{dy}{dx} = \tan \left( \frac{3 \theta}{2} \right)\] ?


Differentiate x2 with respect to x3


If \[y = \sin^{- 1} \left( \sin x \right), - \frac{\pi}{2} \leq x \leq \frac{\pi}{2}\] ,Then, write the value of \[\frac{dy}{dx} \text{ for } x \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \] ?


If \[f\left( x \right) = \log \left\{ \frac{u \left( x \right)}{v \left( x \right)} \right\}, u \left( 1 \right) = v \left( 1 \right) \text{ and }u' \left( 1 \right) = v' \left( 1 \right) = 2\] , then find the value of `f' (1)` ?


The differential coefficient of f (log x) w.r.t. x, where f (x) = log x is ___________ .


If \[f\left( x \right) = \sqrt{x^2 + 6x + 9}, \text { then } f'\left( x \right)\] is equal to ______________ .


If  \[\sqrt{1 - x^6} + \sqrt{1 - y^6} = a^3 \left( x^3 - y^3 \right)\] then \[\frac{dy}{dx}\] is equal to ____________ .


If y = x3 log x, prove that \[\frac{d^4 y}{d x^4} = \frac{6}{x}\] ?


If y = a xn + 1 + bxn and \[x^2 \frac{d^2 y}{d x^2} = \lambda y\]  then write the value of λ ?


If x = t2 and y = t3, find \[\frac{d^2 y}{d x^2}\] ?


If x = 2aty = at2, where a is a constant, then find \[\frac{d^2 y}{d x^2} \text { at }x = \frac{1}{2}\] ?


If f(x) = (cos x + i sin x) (cos 2x + i sin 2x) (cos 3x + i sin 3x) ...... (cos nx + i sin nx) and f(1) = 1, then f'' (1) is equal to

 


If y = etan x, then (cos2 x)y2 =


If \[y^\frac{1}{n} + y^{- \frac{1}{n}} = 2x, \text { then find } \left( x^2 - 1 \right) y_2 + x y_1 =\] ?


If \[\frac{d}{dx}\left[ x^n - a_1 x^{n - 1} + a_2 x^{n - 2} + . . . + \left( - 1 \right)^n a_n \right] e^x = x^n e^x\] then the value of ar, 0 < r ≤ n, is equal to 

 


If y = xn−1 log x then x2 y2 + (3 − 2n) xy1 is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×