Advertisements
Advertisements
प्रश्न
If f(x) = (cos x + i sin x) (cos 2x + i sin 2x) (cos 3x + i sin 3x) ...... (cos nx + i sin nx) and f(1) = 1, then f'' (1) is equal to
पर्याय
\[\frac{n\left( n + 1 \right)}{2}\]
\[\left\{ \frac{n\left( n + 1 \right)}{2} \right\}^2\]
\[- \left\{ \frac{n\left( n + 1 \right)}{2} \right\}^2\]
none of these
उत्तर
(c) \[- \left\{ \frac{n\left( n + 1 \right)}{2} \right\}^2\]
Here,
\[f\left( x \right) = \left( \cos x + i \sin x \right)\left( \cos2x + i \sin2x \right) . . . \left( \cos nx + i \sin nx \right)\]
\[ \Rightarrow f\left( x \right) = \left( \cos x + i \sin x \right) \left( \cos x + i \sin x \right)^2 . . . \left( \cos x + i \sin x \right)^n \]
\[ \Rightarrow f\left( x \right) = \left( \cos x + i \sin x \right)^{1 + 2 + 3 . . . . . . . . . . . n} \]
\[ \Rightarrow f\left( x \right) = \left( \cos x + i \sin x \right)^\frac{n\left( n + 1 \right)}{2} \]
\[ \Rightarrow f\left( x \right) = \left( \cos x + i \sin x \right)^a \left[ \text { where a } = \frac{n\left( n + 1 \right)}{2} \right]\]
\[ \Rightarrow f\left( x \right) = \left( \cos ax + i \sin ax \right) . . . \left( 1 \right)\]
\[ \Rightarrow f\left( 1 \right) = \left( \cos a + i \sin a \right)\]
\[ \Rightarrow 1 = \left( \cos a + i \sin a \right) . . . \left( 2 \right) \left[ \because f\left( 1 \right) = 1 \right]\]
\[\text { Differentiating eqn } . \left( 1 \right),\text { we get }, \]
\[f'\left( x \right) = a\left( - \sin ax + i \cos ax \right)\]
\[ \Rightarrow f''\left( x \right) = a^2 \left( - \cos ax - i \sin ax \right)\]
\[ \Rightarrow f''\left( x \right) = - a^2 \left( \cos ax + i \sin ax \right)\]
\[ \Rightarrow f''\left( x \right) = - \left\{ \frac{n\left( n + 1 \right)}{2} \right\}^2 \left( \cos ax + i \sin ax \right)\]
\[ \Rightarrow f''\left( 1 \right) = - \left\{ \frac{n\left( n + 1 \right)}{2} \right\}^2 \left( \cos a + i \sin a \right)\]
\[ \Rightarrow f''\left( 1 \right) = - \left\{ \frac{n\left( n + 1 \right)}{2} \right\}^2 \left[ \text{ Using } \left( 2 \right) \right]\]
APPEARS IN
संबंधित प्रश्न
Differentiate the following functions from first principles \[e^\sqrt{2x}\].
Differentiate sin (3x + 5) ?
Differentiate \[\sqrt{\frac{1 + x}{1 - x}}\] ?
Differentiate \[\sin \left( \frac{1 + x^2}{1 - x^2} \right)\] ?
Differentiate \[\log \sqrt{\frac{1 - \cos x}{1 + \cos x}}\] ?
Differentiate \[\log \left( x + \sqrt{x^2 + 1} \right)\] ?
Differentiate \[e^{\sin^{- 1} 2x}\] ?
\[\log\left\{ \cot\left( \frac{\pi}{4} + \frac{x}{2} \right) \right\}\] ?
If \[y = \frac{x}{x + 2}\] , prove tha \[x\frac{dy}{dx} = \left( 1 - y \right) y\] ?
Differentiate \[\sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), x \in R\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + bx}{b - ax} \right)\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{2^{x + 1} \cdot 3^x}{1 + \left( 36 \right)^x} \right\}\] with respect to x ?
If \[y = \sin^{- 1} \left( 6x\sqrt{1 - 9 x^2} \right), - \frac{1}{3\sqrt{2}} < x < \frac{1}{3\sqrt{2}}\] \[\frac{dy}{dx} \] ?
If \[y = x \sin \left( a + y \right)\] ,Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?
Differentiate \[\left( \sin x \right)^{\cos x}\] ?
Differentiate \[x^{\tan^{- 1} x }\] ?
Differentiate \[x^{x \cos x +} \frac{x^2 + 1}{x^2 - 1}\] ?
Differentiate \[\left( \cos x \right)^x + \left( \sin x \right)^{1/x}\] ?
Find \[\frac{dy}{dx}\] \[y = e^{3x} \sin 4x \cdot 2^x\] ?
Find \[\frac{dy}{dx}\] \[y = \sin x \sin 2x \sin 3x \sin 4x\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\log x} + \cos^2 \left( \frac{\pi}{4} \right)\] ?
Find \[\frac{dy}{dx}\] , when \[x = b \sin^2 \theta \text{ and } y = a \cos^2 \theta\] ?
Find \[\frac{dy}{dx}\] ,when \[x = \frac{e^t + e^{- t}}{2} \text{ and } y = \frac{e^t - e^{- t}}{2}\] ?
Write the derivative of sinx with respect to cos x ?
If \[y = \sin^{- 1} x + \cos^{- 1} x\] ,find \[\frac{dy}{dx}\] ?
The derivative of \[\cos^{- 1} \left( 2 x^2 - 1 \right)\] with respect to \[\cos^{- 1} x\] is ___________ .
If \[f\left( x \right) = \sqrt{x^2 - 10x + 25}\] then the derivative of f (x) in the interval [0, 7] is ____________ .
Find the second order derivatives of the following function x3 + tan x ?
If x = a (1 − cos3 θ), y = a sin3 θ, prove that \[\frac{d^2 y}{d x^2} = \frac{32}{27a} \text { at } \theta = \frac{\pi}{6}\] ?
If y = (tan−1 x)2, then prove that (1 + x2)2 y2 + 2x(1 + x2)y1 = 2 ?
If y = 500 e7x + 600 e−7x, show that \[\frac{d^2 y}{d x^2} = 49y\] ?
If y = |x − x2|, then find \[\frac{d^2 y}{d x^2}\] ?
\[\frac{d^{20}}{d x^{20}} \left( 2 \cos x \cos 3 x \right) =\]
If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =
If x = 2 at, y = at2, where a is a constant, then \[\frac{d^2 y}{d x^2} \text { at x } = \frac{1}{2}\] is
The number of road accidents in the city due to rash driving, over a period of 3 years, is given in the following table:
Year | Jan-March | April-June | July-Sept. | Oct.-Dec. |
2010 | 70 | 60 | 45 | 72 |
2011 | 79 | 56 | 46 | 84 |
2012 | 90 | 64 | 45 | 82 |
Calculate four quarterly moving averages and illustrate them and original figures on one graph using the same axes for both.
Range of 'a' for which x3 – 12x + [a] = 0 has exactly one real root is (–∞, p) ∪ [q, ∞), then ||p| – |q|| is ______.