मराठी

If F(X) = (Cos X + I Sin X) (Cos 2x + I Sin 2x) (Cos 3x + I Sin 3x) ...... (Cos Nx + I Sin Nx) and F(1) = 1, Then F'' (1) is Equal to - Mathematics

Advertisements
Advertisements

प्रश्न

If f(x) = (cos x + i sin x) (cos 2x + i sin 2x) (cos 3x + i sin 3x) ...... (cos nx + i sin nx) and f(1) = 1, then f'' (1) is equal to

 

पर्याय

  • \[\frac{n\left( n + 1 \right)}{2}\]

  • \[\left\{ \frac{n\left( n + 1 \right)}{2} \right\}^2\]

  • \[- \left\{ \frac{n\left( n + 1 \right)}{2} \right\}^2\]

  • none of these

MCQ

उत्तर

(c)  \[- \left\{ \frac{n\left( n + 1 \right)}{2} \right\}^2\]

Here, 

\[f\left( x \right) = \left( \cos x + i \sin x \right)\left( \cos2x + i \sin2x \right) . . . \left( \cos nx + i \sin nx \right)\]

\[ \Rightarrow f\left( x \right) = \left( \cos x + i \sin x \right) \left( \cos x + i \sin x \right)^2 . . . \left( \cos x + i \sin x \right)^n \]

\[ \Rightarrow f\left( x \right) = \left( \cos x + i \sin x \right)^{1 + 2 + 3 . . . . . . . . . . . n} \]

\[ \Rightarrow f\left( x \right) = \left( \cos x + i \sin x \right)^\frac{n\left( n + 1 \right)}{2} \]

\[ \Rightarrow f\left( x \right) = \left( \cos x + i \sin x \right)^a \left[ \text { where a } = \frac{n\left( n + 1 \right)}{2} \right]\]

\[ \Rightarrow f\left( x \right) = \left( \cos ax + i \sin ax \right) . . . \left( 1 \right)\]

\[ \Rightarrow f\left( 1 \right) = \left( \cos a + i \sin a \right)\]

\[ \Rightarrow 1 = \left( \cos a + i \sin a \right) . . . \left( 2 \right) \left[ \because f\left( 1 \right) = 1 \right]\]

\[\text { Differentiating eqn } . \left( 1 \right),\text {  we get }, \]

\[f'\left( x \right) = a\left( - \sin ax + i \cos ax \right)\]

\[ \Rightarrow f''\left( x \right) = a^2 \left( - \cos ax - i \sin ax \right)\]

\[ \Rightarrow f''\left( x \right) = - a^2 \left( \cos ax + i \sin ax \right)\]

\[ \Rightarrow f''\left( x \right) = - \left\{ \frac{n\left( n + 1 \right)}{2} \right\}^2 \left( \cos ax + i \sin ax \right)\]

\[ \Rightarrow f''\left( 1 \right) = - \left\{ \frac{n\left( n + 1 \right)}{2} \right\}^2 \left( \cos a + i \sin a \right)\]

\[ \Rightarrow f''\left( 1 \right) = - \left\{ \frac{n\left( n + 1 \right)}{2} \right\}^2 \left[ \text{ Using } \left( 2 \right) \right]\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 12: Higher Order Derivatives - Exercise 12.3 [पृष्ठ २३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 12 Higher Order Derivatives
Exercise 12.3 | Q 7 | पृष्ठ २३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Differentiate the following functions from first principles  \[e^\sqrt{2x}\].


Differentiate sin (3x + 5) ?


Differentiate \[\sqrt{\frac{1 + x}{1 - x}}\] ?


Differentiate \[\sin \left( \frac{1 + x^2}{1 - x^2} \right)\] ?


Differentiate \[\log \sqrt{\frac{1 - \cos x}{1 + \cos x}}\] ?


Differentiate \[\log \left( x + \sqrt{x^2 + 1} \right)\] ?


Differentiate \[e^{\sin^{- 1} 2x}\] ?


\[\log\left\{ \cot\left( \frac{\pi}{4} + \frac{x}{2} \right) \right\}\] ?


If \[y = \frac{x}{x + 2}\]  , prove tha \[x\frac{dy}{dx} = \left( 1 - y \right) y\] ? 


Differentiate \[\sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), x \in R\] ?


Differentiate \[\tan^{- 1} \left( \frac{a + bx}{b - ax} \right)\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{2^{x + 1} \cdot 3^x}{1 + \left( 36 \right)^x} \right\}\]  with respect to x ?


If \[y = \sin^{- 1} \left( 6x\sqrt{1 - 9 x^2} \right), - \frac{1}{3\sqrt{2}} < x < \frac{1}{3\sqrt{2}}\] \[\frac{dy}{dx} \] ?


If \[y = x \sin \left( a + y \right)\] ,Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?


Differentiate \[\left( \sin x \right)^{\cos x}\] ?


Differentiate \[x^{\tan^{- 1} x }\]  ?


Differentiate  \[x^{x \cos x +} \frac{x^2 + 1}{x^2 - 1}\]  ?


Differentiate \[\left( \cos x \right)^x + \left( \sin x \right)^{1/x}\] ?


Find  \[\frac{dy}{dx}\] \[y = e^{3x} \sin 4x \cdot 2^x\] ?

 


Find  \[\frac{dy}{dx}\] \[y = \sin x \sin 2x \sin 3x \sin 4x\] ?

 


Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\log x} + \cos^2 \left( \frac{\pi}{4} \right)\] ?


Find \[\frac{dy}{dx}\] , when \[x = b   \sin^2   \theta  \text{ and }  y = a   \cos^2   \theta\] ?


Find \[\frac{dy}{dx}\] ,when \[x = \frac{e^t + e^{- t}}{2} \text{ and } y = \frac{e^t - e^{- t}}{2}\] ?


Write the derivative of sinx with respect to cos x ?


If \[y = \sin^{- 1} x + \cos^{- 1} x\] ,find \[\frac{dy}{dx}\] ?


The derivative of \[\cos^{- 1} \left( 2 x^2 - 1 \right)\] with respect to  \[\cos^{- 1} x\]  is ___________ .


If \[f\left( x \right) = \sqrt{x^2 - 10x + 25}\]  then the derivative of f (x) in the interval [0, 7] is ____________ .


Find the second order derivatives of the following function  x3 + tan x ?


If x = a (1 − cos3 θ), y = a sin3 θ, prove that \[\frac{d^2 y}{d x^2} = \frac{32}{27a} \text { at } \theta = \frac{\pi}{6}\] ?


If y = (tan−1 x)2, then prove that (1 + x2)2 y2 + 2x(1 + x2)y1 = 2 ?


If y = 500 e7x + 600 e−7x, show that \[\frac{d^2 y}{d x^2} = 49y\] ?


If y = |x − x2|, then find \[\frac{d^2 y}{d x^2}\] ?


\[\frac{d^{20}}{d x^{20}} \left( 2 \cos x \cos 3 x \right) =\]

 


If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =


If x = 2 at, y = at2, where a is a constant, then \[\frac{d^2 y}{d x^2} \text { at x } = \frac{1}{2}\] is 

 


The number of road accidents in the city due to rash driving, over a period of 3 years, is given in the following table:

Year Jan-March April-June July-Sept. Oct.-Dec.
2010 70 60 45 72
2011 79 56 46 84
2012 90 64 45 82

Calculate four quarterly moving averages and illustrate them and original figures on one graph using the same axes for both.


Range of 'a' for which x3 – 12x + [a] = 0 has exactly one real root is (–∞, p) ∪ [q, ∞), then ||p| – |q|| is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×