मराठी

Differentiate X X Cos X + X 2 + 1 X 2 − 1 ? - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate  \[x^{x \cos x +} \frac{x^2 + 1}{x^2 - 1}\]  ?

उत्तर

\[\text{ Let y }= x^{x \cos x} + \frac{x^2 + 1}{x^2 - 1}\]

\[\text{ Also, Let u } = x^{x \cos x} \text{ and v } = \frac{x^2 + 1}{x^2 - 1}\]

\[ \therefore y = u + v\]

\[ \Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} . . . \left( i \right)\]

\[\text{ Now, u }= x^{x \cos x} \]

\[ \Rightarrow \log u = \log\left( x^{x \cos x} \right)\]

\[ \Rightarrow \log u = x \cos x \log x\]

Differentiating both sides with respect to x,

\[\frac{1}{u}\frac{du}{dx} = \cos x \log x\frac{d}{dx}\left( x \right) + x\log x\frac{d}{dx}\left( \cos x \right) + x \cos x\frac{d}{dx}\left( \log x \right)\]

\[ \Rightarrow \frac{du}{dx} = u\left[ \cos x \log x + x\left( - \sin x \right)\log x + x \cos x\left( \frac{1}{x} \right) \right]\]

\[ \Rightarrow \frac{du}{dx} = x^{x \cos x} \left( \cos x \log x - x \sin x \log x + \cos x \right)\]

\[ \Rightarrow \frac{du}{dx} = x^{x \cos x} \left[ \cos x\left( 1 + \log x \right) - x \sin x \log x \right] . . . \left( 2 \right)\]

\[\text{ Again, v }= \frac{x^2 + 1}{x^2 - 1}\]

\[ \Rightarrow \log v = \log\left( x^2 + 1 \right) - \log\left( x^2 - 1 \right)\]

Differentiating both sides with respect to x,

\[\frac{1}{v}\frac{dv}{dx} = \frac{2x}{x^2 + 1} - \frac{2x}{x^2 - 1}\]

\[ \Rightarrow \frac{dv}{dx} = v\left[ \frac{2x\left( x^2 - 1 \right) - 2x\left( x^2 + 1 \right)}{\left( x^2 + 1 \right)\left( x^2 - 1 \right)} \right]\]

\[ \Rightarrow \frac{dv}{dx} = \frac{x^2 + 1}{x^2 - 1}\left[ \frac{- 4x}{\left( x^2 + 1 \right)\left( x^2 - 1 \right)} \right]\]

\[ \Rightarrow \frac{dv}{dx} = \frac{- 4x}{\left( x^2 - 1 \right)^2} . . . \left( 3 \right)\]

\[\text{ From} \left( i \right), \left( ii \right) \text{ and } \left( iii \right), \text{ we obtain}\]

\[\frac{dy}{dx} = x^{x \cos x} \left[ \cos x\left( 1 + \log x \right) - x \sin x \log x \right] - \frac{4x}{\left( x^2 - 1 \right)^2}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Differentiation - Exercise 11.05 [पृष्ठ ८८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 11 Differentiation
Exercise 11.05 | Q 18.3 | पृष्ठ ८८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Differentiate tan2 x ?


Differentiate sin (log x) ?


Differentiate \[\sqrt{\frac{1 + x}{1 - x}}\] ?


Differentiate \[\log \left( \frac{x^2 + x + 1}{x^2 - x + 1} \right)\] ?


Differentiate \[\tan^{- 1} \left( \frac{4x}{1 - 4 x^2} \right), - \frac{1}{2} < x < \frac{1}{2}\] ?


Differentiate \[\cos^{- 1} \left( \frac{1 - x^{2n}}{1 + x^{2n}} \right), < x < \infty\] ?


If the derivative of tan−1 (a + bx) takes the value 1 at x = 0, prove that 1 + a2 = b ?


If \[y = \sin^{- 1} \left( 6x\sqrt{1 - 9 x^2} \right), - \frac{1}{3\sqrt{2}} < x < \frac{1}{3\sqrt{2}}\] \[\frac{dy}{dx} \] ?


Find  \[\frac{dy}{dx}\] in the following case \[4x + 3y = \log \left( 4x - 3y \right)\] ?

 


If \[y \sqrt{1 - x^2} + x \sqrt{1 - y^2} = 1\] ,prove that \[\frac{dy}{dx} = - \sqrt{\frac{1 - y^2}{1 - x^2}}\] ?


If \[\log \sqrt{x^2 + y^2} = \tan^{- 1} \left( \frac{y}{x} \right)\] Prove that \[\frac{dy}{dx} = \frac{x + y}{x - y}\] ?


If \[\sin^2 y + \cos xy = k,\] find  \[\frac{dy}{dx}\] at \[x = 1 , \] \[y = \frac{\pi}{4} .\] 


Differentiate \[\left( 1 + \cos x \right)^x\] ?


Differentiate \[\left( \log x \right)^{\cos x}\] ?


Differentiate \[\left( \log x \right)^{ \log x }\] ?


Differentiate \[\left( \cos x \right)^x + \left( \sin x \right)^{1/x}\] ?


Find  \[\frac{dy}{dx}\]  \[y = \left( \sin x \right)^{\cos x} + \left( \cos x \right)^{\sin x}\] ?

 


Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\log x} + \cos^2 \left( \frac{\pi}{4} \right)\] ?


If \[x^{13} y^7 = \left( x + y \right)^{20}\] prove that \[\frac{dy}{dx} = \frac{y}{x}\] ?


If \[x^m y^n = 1\] , prove that \[\frac{dy}{dx} = - \frac{my}{nx}\] ?


\[\text{ If }\cos y = x\cos\left( a + y \right),\text{  where } \cos a \neq \pm 1, \text{ prove that } \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\] ?

\[\text{If y} = 1 + \frac{\alpha}{\left( \frac{1}{x} - \alpha \right)} + \frac{{\beta}/{x}}{\left( \frac{1}{x} - \alpha \right)\left( \frac{1}{x} - \beta \right)} + \frac{{\gamma}/{x^2}}{\left( \frac{1}{x} - \alpha \right)\left( \frac{1}{x} - \beta \right)\left( \frac{1}{x} - \gamma \right)}, \text{ find } \frac{dy}{dx}\] is:

If \[y = \left( \tan x \right)^{\left( \tan x \right)^{\left( \tan x \right)^{. . . \infty}}}\], prove that \[\frac{dy}{dx} = 2\ at\ x = \frac{\pi}{4}\] ?

 


If \[y = \left( \cos x \right)^{\left( \cos x \right)^{\left( \cos x \right) . . . \infty}}\],prove that \[\frac{dy}{dx} = - \frac{y^2 \tan x}{\left( 1 - y \log \cos x \right)}\]?

 


Find \[\frac{dy}{dx}\] , when \[x = \frac{3 at}{1 + t^2}, \text{ and } y = \frac{3 a t^2}{1 + t^2}\] ?


If \[x = a \left( \theta - \sin \theta \right) and, y = a \left( 1 + \cos \theta \right), \text { find } \frac{dy}{dx} \text{ at }\theta = \frac{\pi}{3} \] ?

 


Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right), \text { if }- \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?


If \[\pi \leq x \leq 2\pi \text { and y } = \cos^{- 1} \left( \cos x \right), \text { find } \frac{dy}{dx}\] ?


If \[y = x^x , \text{ find } \frac{dy}{dx} \text{ at } x = e\] ?


Differential coefficient of sec(tan−1 x) is ______.


The derivative of \[\sec^{- 1} \left( \frac{1}{2 x^2 + 1} \right) \text { w . r . t }. \sqrt{1 + 3 x} \text { at } x = - 1/3\]


If  \[\sqrt{1 - x^6} + \sqrt{1 - y^6} = a^3 \left( x^3 - y^3 \right)\] then \[\frac{dy}{dx}\] is equal to ____________ .


Find the second order derivatives of the following function  log (log x)  ?


If \[y = e^{2x} \left( ax + b \right)\]  show that  \[y_2 - 4 y_1 + 4y = 0\] ?


If x = 2 cos t − cos 2ty = 2 sin t − sin 2t, find \[\frac{d^2 y}{d x^2}\text{ at } t = \frac{\pi}{2}\] ?


If y = x + ex, find \[\frac{d^2 x}{d y^2}\] ?


If \[y = \left| \log_e x \right|\] find\[\frac{d^2 y}{d x^2}\] ?


If x = t2, y = t3, then \[\frac{d^2 y}{d x^2} =\] 

 


If \[y = \log_e \left( \frac{x}{a + bx} \right)^x\] then x3 y2 =

 


If y2 = ax2 + bx + c, then \[y^3 \frac{d^2 y}{d x^2}\] is 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×