Advertisements
Advertisements
प्रश्न
Differentiate \[x^{x \cos x +} \frac{x^2 + 1}{x^2 - 1}\] ?
उत्तर
\[\text{ Let y }= x^{x \cos x} + \frac{x^2 + 1}{x^2 - 1}\]
\[\text{ Also, Let u } = x^{x \cos x} \text{ and v } = \frac{x^2 + 1}{x^2 - 1}\]
\[ \therefore y = u + v\]
\[ \Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} . . . \left( i \right)\]
\[\text{ Now, u }= x^{x \cos x} \]
\[ \Rightarrow \log u = \log\left( x^{x \cos x} \right)\]
\[ \Rightarrow \log u = x \cos x \log x\]
Differentiating both sides with respect to x,
\[\frac{1}{u}\frac{du}{dx} = \cos x \log x\frac{d}{dx}\left( x \right) + x\log x\frac{d}{dx}\left( \cos x \right) + x \cos x\frac{d}{dx}\left( \log x \right)\]
\[ \Rightarrow \frac{du}{dx} = u\left[ \cos x \log x + x\left( - \sin x \right)\log x + x \cos x\left( \frac{1}{x} \right) \right]\]
\[ \Rightarrow \frac{du}{dx} = x^{x \cos x} \left( \cos x \log x - x \sin x \log x + \cos x \right)\]
\[ \Rightarrow \frac{du}{dx} = x^{x \cos x} \left[ \cos x\left( 1 + \log x \right) - x \sin x \log x \right] . . . \left( 2 \right)\]
\[\text{ Again, v }= \frac{x^2 + 1}{x^2 - 1}\]
\[ \Rightarrow \log v = \log\left( x^2 + 1 \right) - \log\left( x^2 - 1 \right)\]
Differentiating both sides with respect to x,
\[\frac{1}{v}\frac{dv}{dx} = \frac{2x}{x^2 + 1} - \frac{2x}{x^2 - 1}\]
\[ \Rightarrow \frac{dv}{dx} = v\left[ \frac{2x\left( x^2 - 1 \right) - 2x\left( x^2 + 1 \right)}{\left( x^2 + 1 \right)\left( x^2 - 1 \right)} \right]\]
\[ \Rightarrow \frac{dv}{dx} = \frac{x^2 + 1}{x^2 - 1}\left[ \frac{- 4x}{\left( x^2 + 1 \right)\left( x^2 - 1 \right)} \right]\]
\[ \Rightarrow \frac{dv}{dx} = \frac{- 4x}{\left( x^2 - 1 \right)^2} . . . \left( 3 \right)\]
\[\text{ From} \left( i \right), \left( ii \right) \text{ and } \left( iii \right), \text{ we obtain}\]
\[\frac{dy}{dx} = x^{x \cos x} \left[ \cos x\left( 1 + \log x \right) - x \sin x \log x \right] - \frac{4x}{\left( x^2 - 1 \right)^2}\]
APPEARS IN
संबंधित प्रश्न
Differentiate tan2 x ?
Differentiate sin (log x) ?
Differentiate \[\sqrt{\frac{1 + x}{1 - x}}\] ?
Differentiate \[\log \left( \frac{x^2 + x + 1}{x^2 - x + 1} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{4x}{1 - 4 x^2} \right), - \frac{1}{2} < x < \frac{1}{2}\] ?
Differentiate \[\cos^{- 1} \left( \frac{1 - x^{2n}}{1 + x^{2n}} \right), < x < \infty\] ?
If the derivative of tan−1 (a + bx) takes the value 1 at x = 0, prove that 1 + a2 = b ?
If \[y = \sin^{- 1} \left( 6x\sqrt{1 - 9 x^2} \right), - \frac{1}{3\sqrt{2}} < x < \frac{1}{3\sqrt{2}}\] \[\frac{dy}{dx} \] ?
Find \[\frac{dy}{dx}\] in the following case \[4x + 3y = \log \left( 4x - 3y \right)\] ?
If \[y \sqrt{1 - x^2} + x \sqrt{1 - y^2} = 1\] ,prove that \[\frac{dy}{dx} = - \sqrt{\frac{1 - y^2}{1 - x^2}}\] ?
If \[\log \sqrt{x^2 + y^2} = \tan^{- 1} \left( \frac{y}{x} \right)\] Prove that \[\frac{dy}{dx} = \frac{x + y}{x - y}\] ?
If \[\sin^2 y + \cos xy = k,\] find \[\frac{dy}{dx}\] at \[x = 1 , \] \[y = \frac{\pi}{4} .\]
Differentiate \[\left( 1 + \cos x \right)^x\] ?
Differentiate \[\left( \log x \right)^{\cos x}\] ?
Differentiate \[\left( \log x \right)^{ \log x }\] ?
Differentiate \[\left( \cos x \right)^x + \left( \sin x \right)^{1/x}\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \sin x \right)^{\cos x} + \left( \cos x \right)^{\sin x}\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\log x} + \cos^2 \left( \frac{\pi}{4} \right)\] ?
If \[x^{13} y^7 = \left( x + y \right)^{20}\] prove that \[\frac{dy}{dx} = \frac{y}{x}\] ?
If \[x^m y^n = 1\] , prove that \[\frac{dy}{dx} = - \frac{my}{nx}\] ?
If \[y = \left( \tan x \right)^{\left( \tan x \right)^{\left( \tan x \right)^{. . . \infty}}}\], prove that \[\frac{dy}{dx} = 2\ at\ x = \frac{\pi}{4}\] ?
If \[y = \left( \cos x \right)^{\left( \cos x \right)^{\left( \cos x \right) . . . \infty}}\],prove that \[\frac{dy}{dx} = - \frac{y^2 \tan x}{\left( 1 - y \log \cos x \right)}\]?
Find \[\frac{dy}{dx}\] , when \[x = \frac{3 at}{1 + t^2}, \text{ and } y = \frac{3 a t^2}{1 + t^2}\] ?
If \[x = a \left( \theta - \sin \theta \right) and, y = a \left( 1 + \cos \theta \right), \text { find } \frac{dy}{dx} \text{ at }\theta = \frac{\pi}{3} \] ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right), \text { if }- \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?
If \[\pi \leq x \leq 2\pi \text { and y } = \cos^{- 1} \left( \cos x \right), \text { find } \frac{dy}{dx}\] ?
If \[y = x^x , \text{ find } \frac{dy}{dx} \text{ at } x = e\] ?
Differential coefficient of sec(tan−1 x) is ______.
The derivative of \[\sec^{- 1} \left( \frac{1}{2 x^2 + 1} \right) \text { w . r . t }. \sqrt{1 + 3 x} \text { at } x = - 1/3\]
If \[\sqrt{1 - x^6} + \sqrt{1 - y^6} = a^3 \left( x^3 - y^3 \right)\] then \[\frac{dy}{dx}\] is equal to ____________ .
Find the second order derivatives of the following function log (log x) ?
If \[y = e^{2x} \left( ax + b \right)\] show that \[y_2 - 4 y_1 + 4y = 0\] ?
If x = 2 cos t − cos 2t, y = 2 sin t − sin 2t, find \[\frac{d^2 y}{d x^2}\text{ at } t = \frac{\pi}{2}\] ?
If y = x + ex, find \[\frac{d^2 x}{d y^2}\] ?
If \[y = \left| \log_e x \right|\] find\[\frac{d^2 y}{d x^2}\] ?
If x = t2, y = t3, then \[\frac{d^2 y}{d x^2} =\]
If \[y = \log_e \left( \frac{x}{a + bx} \right)^x\] then x3 y2 =
If y2 = ax2 + bx + c, then \[y^3 \frac{d^2 y}{d x^2}\] is