Advertisements
Advertisements
प्रश्न
If \[y = \left( \tan x \right)^{\left( \tan x \right)^{\left( \tan x \right)^{. . . \infty}}}\], prove that \[\frac{dy}{dx} = 2\ at\ x = \frac{\pi}{4}\] ?
उत्तर
\[\text{ We have, y } = \left( \tan x \right)^{\left( \tan x \right)^{\left( \tan x \right)^{. . . \infty}}} \]
\[ \Rightarrow y = \left( \tan x \right)^y\]
Taking log on both sides,\[\log y = \log \left( \tan x \right)^y \]
\[ \Rightarrow \log y = y \log \tan x\]
Differentiating with respect to x using chain rule ,
\[\frac{1}{y}\frac{dy}{dx} = y\frac{d}{dx}\left\{ \log \tan x \right\} + \log \tan\frac{dy}{dx}\]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = \frac{y}{\tan x}\frac{d}{dx}\left( \tan x \right) + \log \tan\frac{dy}{dx}\]
\[ \Rightarrow \frac{dy}{dx}\left( \frac{1}{y} - \log \tan x \right) = \frac{y}{\tan x} \sec^2 x\]
\[ \Rightarrow \frac{dy}{dx} = \frac{y}{\tan x} \sec^2 x \times \left( \frac{y}{1 - y\log \tan x} \right)\]
\[\text{Now}, \left( \frac{dy}{dx} \right)_{x = \frac{\pi}{4}} = \frac{y \sec^2 \left( \frac{\pi}{4} \right)}{\tan\left( \frac{\pi}{4} \right)} \times \frac{y}{1 - y \log \tan\left( \frac{\pi}{4} \right)}\]
\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = \frac{\pi}{4}} = \frac{y^2 \left( \sqrt{2} \right)^2}{1\left( 1 - y \log \tan 1 \right)}\]
\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = \frac{\pi}{4}} = \frac{2 \left( 1 \right)^2}{\left( 1 - 0 \right)} \left[ \begin{array}\because \left( y \right)_\frac{\pi}{4} = \left( \tan\frac{\pi}{4} \right)^{\left( \tan\frac{\pi}{4} \right)^{\left( \tan\frac{\pi}{4} \right)^{. . . \infty}}}\end{array} = 1 \right] \]
\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = \frac{\pi}{4}} = 2\]
APPEARS IN
संबंधित प्रश्न
Differentiate tan (x° + 45°) ?
Differentiate \[\log \left( \frac{\sin x}{1 + \cos x} \right)\] ?
Differentiate \[\log \left( x + \sqrt{x^2 + 1} \right)\] ?
If \[y = \frac{e^x - e^{- x}}{e^x + e^{- x}}\] .prove that \[\frac{dy}{dx} = 1 - y^2\] ?
If \[y = \sqrt{a^2 - x^2}\] prove that \[y\frac{dy}{dx} + x = 0\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?
Differentiate \[\sin^{- 1} \left( 2 x^2 - 1 \right), 0 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{x - a}{x + a} \right)\] ?
If \[y = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), x > 0\] ,prove that \[\frac{dy}{dx} = \frac{4}{1 + x^2} \] ?
If the derivative of tan−1 (a + bx) takes the value 1 at x = 0, prove that 1 + a2 = b ?
Find \[\frac{dy}{dx}\] in the following case \[\left( x^2 + y^2 \right)^2 = xy\] ?
Find \[\frac{dy}{dx}\] in the following case \[e^{x - y} = \log \left( \frac{x}{y} \right)\] ?
If \[y \sqrt{1 - x^2} + x \sqrt{1 - y^2} = 1\] ,prove that \[\frac{dy}{dx} = - \sqrt{\frac{1 - y^2}{1 - x^2}}\] ?
If \[\sin^2 y + \cos xy = k,\] find \[\frac{dy}{dx}\] at \[x = 1 , \] \[y = \frac{\pi}{4} .\]
Differentiate \[x^{\sin x}\] ?
Differentiate \[\left( \sin x \right)^{\cos x}\] ?
Differentiate \[x^{x \cos x +} \frac{x^2 + 1}{x^2 - 1}\] ?
Differentiate \[e^{\sin x }+ \left( \tan x \right)^x\] ?
If `y=(sinx)^x + sin^-1 sqrtx "then find" dy/dx`
If \[y = x^x , \text{ find } \frac{dy}{dx} \text{ at } x = e\] ?
Differential coefficient of sec(tan−1 x) is ______.
Let \[\cup = \sin^{- 1} \left( \frac{2 x}{1 + x^2} \right) \text { and }V = \tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text { then } \frac{d \cup}{dV} =\] ____________ .
If \[\sin y = x \sin \left( a + y \right), \text { then }\frac{dy}{dx} \text { is}\] ____________ .
If \[f\left( x \right) = \sqrt{x^2 - 10x + 25}\] then the derivative of f (x) in the interval [0, 7] is ____________ .
If \[\sqrt{1 - x^6} + \sqrt{1 - y^6} = a^3 \left( x^3 - y^3 \right)\] then \[\frac{dy}{dx}\] is equal to ____________ .
If \[y = \sqrt{\sin x + y}, \text { then }\frac{dy}{dx} \text { equals }\] ______________ .
Find the second order derivatives of the following function log (log x) ?
If y = cot x show that \[\frac{d^2 y}{d x^2} + 2y\frac{dy}{dx} = 0\] ?
If y = (cot−1 x)2, prove that y2(x2 + 1)2 + 2x (x2 + 1) y1 = 2 ?
\[\text { If x } = a\left( \cos t + t \sin t \right) \text { and y} = a\left( \sin t - t \cos t \right),\text { then find the value of } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?
\[\text{ If x } = a\left( \cos t + \log \tan\frac{t}{2} \right) \text { and y } = a\left( \sin t \right), \text { evaluate } \frac{d^2 y}{d x^2} \text { at t } = \frac{\pi}{3} \] ?
\[\text { If x } = a\left( \cos2t + 2t \sin2t \right)\text { and y } = a\left( \sin2t - 2t \cos2t \right), \text { then find } \frac{d^2 y}{d x^2} \] ?
If \[y = \left| \log_e x \right|\] find\[\frac{d^2 y}{d x^2}\] ?
If x = a cos nt − b sin nt, then \[\frac{d^2 x}{d t^2}\] is
If y = a + bx2, a, b arbitrary constants, then
If y = sin (m sin−1 x), then (1 − x2) y2 − xy1 is equal to
Differentiate sin(log sin x) ?