Advertisements
Advertisements
प्रश्न
If \[y = e^{x^{e^x}} + x^{e^{e^x}} + e^{x^{x^e}}\], prove that \[\frac{dy}{dx} = e^{x^{e^x}} \cdot x^{e^x} \left\{ \frac{e^x}{x} + e^x \cdot \log x \right\}+ x^{e^{e^x}} \cdot e^{e^x} \left\{ \frac{1}{x} + e^x \cdot \log x \right\} + e^{x^{x^e}} x^{x^e} \cdot x^{e - 1} \left\{ x + e \log x \right\}\]
उत्तर
\[\text{ We have, y } = e^{x^{e^x}} + x^{e^{e^x}} + e^{x^{x^e}} \]
\[ \Rightarrow y = u + v + w\]
\[ \Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} + \frac{dw}{dx} . . . \left( i \right)\]
\[\text{ where u } = e^{x^{e^x}} , v = x^{e^{e^x}} \text{ and w } = e^{x^{x^e}} \]
\[\text{ Now, u } = e^{x^{e^x}} . . . \left( ii \right)\]
Taking log on both sides,
\[\log u = \log e^{x^{e^x}} \]
\[ \Rightarrow \log u = x^{e^x} \log e\]
\[ \Rightarrow \log u = x^{e^x} . . . \left( iii \right)\]
Taking log on both sides,
\[\log \log u = \log x^{e^x} \]
\[ \Rightarrow \log \log u = e^x \log x\]
Differentiating with respect to x,
\[\Rightarrow \frac{1}{\log u}\frac{d}{dx}\left( \log u \right) = e^x \frac{d}{dx}\left( \log x \right) + \log x\frac{d}{dx}\left( e^x \right)\]
\[ \Rightarrow \frac{1}{\log u}\frac{1}{u}\frac{du}{dx} = \frac{e^x}{x} + e^x \log x\]
\[ \Rightarrow \frac{du}{dx} = u\log u\left[ \frac{e^x}{x} + e^x \log x \right]\]
\[ \Rightarrow \frac{du}{dx} = e^{x^{e^x}} \times x^{e^x} \left[ \frac{e^x}{x} + e^x \log x \right] . . . \left( A \right)\]
\[ \left[ \text{ Using equation } \left( ii \right) \text{ and } \left( iii \right) \right]\]
\[\text{ Now, v } = x^{e^{e^x}} . . . \left( iv \right)\]
Taking log on both sides,
\[\log v = \log x^{e^{e^x}} \]
\[ \Rightarrow \log v = e^{e^x} \log x\]
\[\Rightarrow \frac{1}{v}\frac{dv}{dx} = e^{e^x} \frac{d}{dx}\left( \log x \right) + \log x\frac{d}{dx}\left( e^{e^x} \right)\]
\[ \Rightarrow \frac{1}{v}\frac{dv}{dx} = e^{e^x} \left( \frac{1}{x} \right) + \log x e^{e^x} \frac{d}{dx}\left( e^x \right)\]
\[ \Rightarrow \frac{dv}{dx} = v\left[ e^{e^x} \left( \frac{1}{x} \right) + \log x e^{e^x} e^x \right]\]
\[ \Rightarrow \frac{dv}{dx} = x^{e^{e^x}} \times e^{e^x} \left[ \frac{1}{x} + e^x \log x \right] . . . \left( B \right) \]
\[ \left\{ \text{ Using equation } \left( 4 \right) \right\}\]
\[\text{ Now, w } = e^{x^{x^e}} . . . \left( v \right)\]
Taking log on both sides,
\[\log w = \log e^{x^{x^e}} \]
\[ \Rightarrow \log w = x^{x^e} \log e\]
\[ \Rightarrow \log w = x^{x^e} . . . \left( vi \right)\]
Taking log on both sides,
\[\log \log w = \log x^{x^e} \]
\[ \Rightarrow \log \log w = x^e \log x\]
\[\Rightarrow \frac{1}{\log w}\frac{d}{dx}\left( \log w \right) = x^e \frac{d}{dx}\left( \log x \right) + \log x\frac{d}{dx}\left( x^e \right)\]
\[ \Rightarrow \frac{1}{\log w}\left( \frac{1}{w} \right)\frac{dw}{dx} = x^e \left( \frac{1}{x} \right) + \log xe x^{e - 1} \]
\[ \Rightarrow \frac{dw}{dx} = w \log w\left[ x^{e - 1} + e \log x x^{e - 1} \right]\]
\[ \Rightarrow \frac{dw}{dx} = e^{x^{x^e}} x^{x^e} x^{e - 1} \left( 1 + e \log x \right) - - - - \left( C \right) \]
\[ \left[ \text{ using equation} \left( v \right), \left( vi \right) \right]\]
\[\text{ Using equation} \left( A \right), \left( B \right)\text{ and } \left( C \right) \text{ in equation } \left( i \right),\text{ we get }\]
\[\frac{dy}{dx} = e^{x^{e^x}} x^{e^x} \left[ \frac{e^x}{x} + e^x \log x \right] + x^{e^{e^x}} \times e^{e^x} \left[ \frac{1}{x} + e^x \log x \right] + e^{x^{x^e}} x^{x^e} x^{e - 1} \left( 1 + e \log x \right)\]
APPEARS IN
संबंधित प्रश्न
Prove that `y=(4sintheta)/(2+costheta)-theta `
Differentiate the following functions from first principles e3x.
If \[y = \log \left\{ \sqrt{x - 1} - \sqrt{x + 1} \right\}\] ,show that \[\frac{dy}{dx} = \frac{- 1}{2\sqrt{x^2 - 1}}\] ?
Differentiate \[\sin^{- 1} \left( 2 x^2 - 1 \right), 0 < x < 1\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{1 + \sqrt{1 - x^2}} \right\}, - 1 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{4x}{1 - 4 x^2} \right), - \frac{1}{2} < x < \frac{1}{2}\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + x}{1 - ax} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{x}{1 + 6 x^2} \right)\] ?
If the derivative of tan−1 (a + bx) takes the value 1 at x = 0, prove that 1 + a2 = b ?
Find \[\frac{dy}{dx}\] in the following case \[xy = c^2\] ?
Find \[\frac{dy}{dx}\] in the following case \[x^5 + y^5 = 5 xy\] ?
If \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?
If \[y = \left\{ \log_{\cos x} \sin x \right\} \left\{ \log_{\sin x} \cos x \right\}^{- 1} + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right), \text{ find } \frac{dy}{dx} \text{ at }x = \frac{\pi}{4}\] ?
If \[\sqrt{y + x} + \sqrt{y - x} = c, \text {show that } \frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\] ?
Differentiate \[x^{\sin x}\] ?
Differentiate \[{10}^{ \log \sin x }\] ?
Differentiate \[\left( \tan x \right)^{1/x}\] ?
Differentiate \[\left( x^x \right) \sqrt{x}\] ?
Find \[\frac{dy}{dx}\] \[y = e^{3x} \sin 4x \cdot 2^x\] ?
If \[y = \left( \sin x - \cos x \right)^{\sin x - \cos x} , \frac{\pi}{4} < x < \frac{3\pi}{4}, \text{ find} \frac{dy}{dx}\] ?
If \[y^x + x^y + x^x = a^b\] ,find \[\frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\] , when \[x = b \sin^2 \theta \text{ and } y = a \cos^2 \theta\] ?
Find \[\frac{dy}{dx}\] , when \[x = \frac{1 - t^2}{1 + t^2} \text{ and y } = \frac{2 t}{1 + t^2}\] ?
If \[x = \frac{1 + \log t}{t^2}, y = \frac{3 + 2\log t}{t}, \text { find } \frac{dy}{dx}\] ?
Differentiate log (1 + x2) with respect to tan−1 x ?
If \[y = \log \sqrt{\tan x}, \text{ write } \frac{dy}{dx} \] ?
If \[u = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ and v} = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\] where \[- 1 < x < 1\], then write the value of \[\frac{du}{dv}\] ?
If \[y = \frac{1}{1 + x^{a - b} +^{c - b}} + \frac{1}{1 + x^{b - c} + x^{a - c}} + \frac{1}{1 + x^{b - a} + x^{c - a}}\] then \[\frac{dy}{dx}\] is equal to ______________ .
Find the second order derivatives of the following function x cos x ?
If \[y = e^{\tan^{- 1} x}\] prove that (1 + x2)y2 + (2x − 1)y1 = 0 ?
If \[y = e^{2x} \left( ax + b \right)\] show that \[y_2 - 4 y_1 + 4y = 0\] ?
If x = 4z2 + 5, y = 6z2 + 7z + 3, find \[\frac{d^2 y}{d x^2}\] ?
\[\text { If x } = a\left( \cos2t + 2t \sin2t \right)\text { and y } = a\left( \sin2t - 2t \cos2t \right), \text { then find } \frac{d^2 y}{d x^2} \] ?
\[\text { If }y = A e^{- kt} \cos\left( pt + c \right), \text { prove that } \frac{d^2 y}{d t^2} + 2k\frac{d y}{d t} + n^2 y = 0, \text { where } n^2 = p^2 + k^2 \] ?
If y = a xn + 1 + bx−n and \[x^2 \frac{d^2 y}{d x^2} = \lambda y\] then write the value of λ ?
If x = at2, y = 2 at, then \[\frac{d^2 y}{d x^2} =\]
If y = etan x, then (cos2 x)y2 =
The number of road accidents in the city due to rash driving, over a period of 3 years, is given in the following table:
Year | Jan-March | April-June | July-Sept. | Oct.-Dec. |
2010 | 70 | 60 | 45 | 72 |
2011 | 79 | 56 | 46 | 84 |
2012 | 90 | 64 | 45 | 82 |
Calculate four quarterly moving averages and illustrate them and original figures on one graph using the same axes for both.