मराठी

If Y = E X E X + X E E X + E X X E , Prove that D Y D X = E X E X ⋅ X E X { E X X + E X ⋅ Log X } - Mathematics

Advertisements
Advertisements

प्रश्न

If \[y = e^{x^{e^x}} + x^{e^{e^x}} + e^{x^{x^e}}\], prove that  \[\frac{dy}{dx} = e^{x^{e^x}} \cdot x^{e^x} \left\{ \frac{e^x}{x} + e^x \cdot \log x \right\}+ x^{e^{e^x}} \cdot e^{e^x} \left\{ \frac{1}{x} + e^x \cdot \log x \right\} + e^{x^{x^e}} x^{x^e} \cdot x^{e - 1} \left\{ x + e \log x \right\}\]

 

बेरीज

उत्तर

\[\text{ We have, y } = e^{x^{e^x}} + x^{e^{e^x}} + e^{x^{x^e}} \]
\[ \Rightarrow y = u + v + w\]
\[ \Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} + \frac{dw}{dx} . . . \left( i \right)\]
\[\text{ where u } = e^{x^{e^x}} , v = x^{e^{e^x}} \text{ and w } = e^{x^{x^e}} \]
\[\text{ Now, u } = e^{x^{e^x}} . . . \left( ii \right)\]

Taking log on both sides,

\[\log u = \log e^{x^{e^x}} \]
\[ \Rightarrow \log u = x^{e^x} \log e\]
\[ \Rightarrow \log u = x^{e^x} . . . \left( iii \right)\]

Taking log on both sides,

\[\log \log u = \log x^{e^x} \]
\[ \Rightarrow \log \log u = e^x \log x\]

Differentiating with respect to x,

\[\Rightarrow \frac{1}{\log u}\frac{d}{dx}\left( \log u \right) = e^x \frac{d}{dx}\left( \log x \right) + \log x\frac{d}{dx}\left( e^x \right)\]
\[ \Rightarrow \frac{1}{\log u}\frac{1}{u}\frac{du}{dx} = \frac{e^x}{x} + e^x \log x\]
\[ \Rightarrow \frac{du}{dx} = u\log u\left[ \frac{e^x}{x} + e^x \log x \right]\]
\[ \Rightarrow \frac{du}{dx} = e^{x^{e^x}} \times x^{e^x} \left[ \frac{e^x}{x} + e^x \log x \right] . . . \left( A \right)\]
\[ \left[ \text{ Using equation } \left( ii \right) \text{ and } \left( iii \right) \right]\]
\[\text{ Now, v } = x^{e^{e^x}} . . . \left( iv \right)\]

Taking log on both sides,

\[\log v = \log x^{e^{e^x}} \]
\[ \Rightarrow \log v = e^{e^x} \log x\]

\[\Rightarrow \frac{1}{v}\frac{dv}{dx} = e^{e^x} \frac{d}{dx}\left( \log x \right) + \log x\frac{d}{dx}\left( e^{e^x} \right)\]
\[ \Rightarrow \frac{1}{v}\frac{dv}{dx} = e^{e^x} \left( \frac{1}{x} \right) + \log x e^{e^x} \frac{d}{dx}\left( e^x \right)\]
\[ \Rightarrow \frac{dv}{dx} = v\left[ e^{e^x} \left( \frac{1}{x} \right) + \log x e^{e^x} e^x \right]\]
\[ \Rightarrow \frac{dv}{dx} = x^{e^{e^x}} \times e^{e^x} \left[ \frac{1}{x} + e^x \log x \right] . . . \left( B \right) \]
\[ \left\{ \text{ Using equation } \left( 4 \right) \right\}\]
\[\text{ Now, w } = e^{x^{x^e}} . . . \left( v \right)\]

Taking log on both sides,

\[\log w = \log e^{x^{x^e}} \]
\[ \Rightarrow \log w = x^{x^e} \log e\]
\[ \Rightarrow \log w = x^{x^e} . . . \left( vi \right)\]

Taking log on both sides,

\[\log \log w = \log x^{x^e} \]
\[ \Rightarrow \log \log w = x^e \log x\]

\[\Rightarrow \frac{1}{\log w}\frac{d}{dx}\left( \log w \right) = x^e \frac{d}{dx}\left( \log x \right) + \log x\frac{d}{dx}\left( x^e \right)\]
\[ \Rightarrow \frac{1}{\log w}\left( \frac{1}{w} \right)\frac{dw}{dx} = x^e \left( \frac{1}{x} \right) + \log xe x^{e - 1} \]
\[ \Rightarrow \frac{dw}{dx} = w \log w\left[ x^{e - 1} + e \log x x^{e - 1} \right]\]
\[ \Rightarrow \frac{dw}{dx} = e^{x^{x^e}} x^{x^e} x^{e - 1} \left( 1 + e \log x \right) - - - - \left( C \right) \]
\[ \left[ \text{ using equation} \left( v \right), \left( vi \right) \right]\]
\[\text{ Using equation} \left( A \right), \left( B \right)\text{  and } \left( C \right) \text{ in equation } \left( i \right),\text{ we get }\]
\[\frac{dy}{dx} = e^{x^{e^x}} x^{e^x} \left[ \frac{e^x}{x} + e^x \log x \right] + x^{e^{e^x}} \times e^{e^x} \left[ \frac{1}{x} + e^x \log x \right] + e^{x^{x^e}} x^{x^e} x^{e - 1} \left( 1 + e \log x \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Differentiation - Exercise 11.06 [पृष्ठ ९९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 11 Differentiation
Exercise 11.06 | Q 7 | पृष्ठ ९९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Prove that `y=(4sintheta)/(2+costheta)-theta `


Differentiate the following functions from first principles e3x.


If \[y = \log \left\{ \sqrt{x - 1} - \sqrt{x + 1} \right\}\] ,show that \[\frac{dy}{dx} = \frac{- 1}{2\sqrt{x^2 - 1}}\] ?


Differentiate \[\sin^{- 1} \left( 2 x^2 - 1 \right), 0 < x < 1\]  ?


Differentiate \[\tan^{- 1} \left\{ \frac{x}{1 + \sqrt{1 - x^2}} \right\}, - 1 < x < 1\] ?


Differentiate \[\tan^{- 1} \left( \frac{4x}{1 - 4 x^2} \right), - \frac{1}{2} < x < \frac{1}{2}\] ?


Differentiate \[\tan^{- 1} \left( \frac{a + x}{1 - ax} \right)\] ?


Differentiate \[\tan^{- 1} \left( \frac{x}{1 + 6 x^2} \right)\] ?


If the derivative of tan−1 (a + bx) takes the value 1 at x = 0, prove that 1 + a2 = b ?


Find \[\frac{dy}{dx}\] in the following case \[xy = c^2\]  ?


Find  \[\frac{dy}{dx}\] in the following case \[x^5 + y^5 = 5 xy\] ?

 


If \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?


If \[y = \left\{ \log_{\cos x} \sin x \right\} \left\{ \log_{\sin x} \cos x \right\}^{- 1} + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right), \text{ find } \frac{dy}{dx} \text{ at }x = \frac{\pi}{4}\] ?


If \[\sqrt{y + x} + \sqrt{y - x} = c, \text {show that } \frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\] ?


Differentiate \[x^{\sin x}\]  ?


Differentiate \[{10}^{ \log \sin x }\] ?


Differentiate \[\left( \tan x \right)^{1/x}\] ?


Differentiate  \[\left( x^x \right) \sqrt{x}\] ?


Find  \[\frac{dy}{dx}\] \[y = e^{3x} \sin 4x \cdot 2^x\] ?

 


If \[y = \left( \sin x - \cos x \right)^{\sin x - \cos x} , \frac{\pi}{4} < x < \frac{3\pi}{4}, \text{ find} \frac{dy}{dx}\] ?


If \[y^x + x^y + x^x = a^b\] ,find \[\frac{dy}{dx}\] ?


Find \[\frac{dy}{dx}\] , when \[x = b   \sin^2   \theta  \text{ and }  y = a   \cos^2   \theta\] ?


Find  \[\frac{dy}{dx}\] , when  \[x = \frac{1 - t^2}{1 + t^2} \text{ and y } = \frac{2 t}{1 + t^2}\] ?

 


If  \[x = \frac{1 + \log t}{t^2}, y = \frac{3 + 2\log t}{t}, \text { find } \frac{dy}{dx}\] ?


Differentiate log (1 + x2) with respect to tan−1 x ?


If \[y = \log \sqrt{\tan x}, \text{ write } \frac{dy}{dx} \] ?


If \[u = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ and v} = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\] where \[- 1 < x < 1\], then write the value of \[\frac{du}{dv}\] ?


If \[y = \frac{1}{1 + x^{a - b} +^{c - b}} + \frac{1}{1 + x^{b - c} + x^{a - c}} + \frac{1}{1 + x^{b - a} + x^{c - a}}\] then \[\frac{dy}{dx}\]  is equal to ______________ .


Find the second order derivatives of the following function x cos x ?


If \[y = e^{\tan^{- 1} x}\] prove that (1 + x2)y2 + (2x − 1)y1 = 0 ?


If \[y = e^{2x} \left( ax + b \right)\]  show that  \[y_2 - 4 y_1 + 4y = 0\] ?


If x = 4z2 + 5, y = 6z2 + 7z + 3, find \[\frac{d^2 y}{d x^2}\] ?


\[\text { If x } = a\left( \cos2t + 2t \sin2t \right)\text {  and y } = a\left( \sin2t - 2t \cos2t \right), \text { then find } \frac{d^2 y}{d x^2} \] ?


\[\text { If }y = A e^{- kt} \cos\left( pt + c \right), \text { prove that } \frac{d^2 y}{d t^2} + 2k\frac{d y}{d t} + n^2 y = 0, \text { where } n^2 = p^2 + k^2 \] ?


If y = a xn + 1 + bxn and \[x^2 \frac{d^2 y}{d x^2} = \lambda y\]  then write the value of λ ?


If x = at2, y = 2 at, then \[\frac{d^2 y}{d x^2} =\] 

 


If y = etan x, then (cos2 x)y2 =


The number of road accidents in the city due to rash driving, over a period of 3 years, is given in the following table:

Year Jan-March April-June July-Sept. Oct.-Dec.
2010 70 60 45 72
2011 79 56 46 84
2012 90 64 45 82

Calculate four quarterly moving averages and illustrate them and original figures on one graph using the same axes for both.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×