मराठी

Differentiate X Sin X ? - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate \[x^{\sin x}\]  ?

उत्तर

\[\text{ Let y }= x^{\sin x} . . . \left( i \right)\]

Taking log on both sides,

\[\log y = \log x^{\sin x} \]
\[ \Rightarrow \log y = \sin x \log x \left[ \because \log a^b = b \log a \right]\]

Differentiating with respect to x, we get,

\[\Rightarrow \frac{1}{y}\frac{dy}{dx} = \sin x\frac{d}{dx}\log x + \log x\frac{d}{dx}\sin x \left[ \text{ using product rule } \right]\]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = \sin x\left( \frac{1}{x} \right) + \log x\left( \cos x \right)\]
\[ \Rightarrow \frac{dy}{dx} = y\left[ \frac{\sin x}{x} + \left( \log x \right)\left( \cos x \right) \right]\]

\[\Rightarrow \frac{dy}{dx} = x^{\sin x} \left[ \frac{\sin x}{x} + \left( \log x \right)\left( \cos x \right) \right]\]   [From (i)]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Differentiation - Exercise 11.05 [पृष्ठ ८८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 11 Differentiation
Exercise 11.05 | Q 2 | पृष्ठ ८८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If the function f(x)=2x39mx2+12m2x+1, where m>0 attains its maximum and minimum at p and q respectively such that p2=q, then find the value of m.

 


If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum, when the angle between them is 60º.


Differentiate the following functions from first principles  \[e^\sqrt{2x}\].


Differentiate sin2 (2x + 1) ?


Differentiate \[3^{x \log x}\] ?


Differentiate \[\log \left( cosec x - \cot x \right)\] ?


Differentiate \[\sqrt{\tan^{- 1} \left( \frac{x}{2} \right)}\] ?


Differentiate \[x \sin 2x + 5^x + k^k + \left( \tan^2 x \right)^3\] ?


If  \[y = \log \sqrt{\frac{1 + \tan x}{1 - \tan x}}\]  prove that \[\frac{dy}{dx} = \sec 2x\] ?


Differentiate \[\cos^{- 1} \left\{ \sqrt{\frac{1 + x}{2}} \right\}, - 1 < x < 1\] ?


Differentiate  \[\sin^{- 1} \left\{ \sqrt{\frac{1 - x}{2}} \right\}, 0 < x < 1\]  ?


Differentiate \[\tan^{- 1} \left( \frac{5 x}{1 - 6 x^2} \right), - \frac{1}{\sqrt{6}} < x < \frac{1}{\sqrt{6}}\] ?


If \[y = x \sin \left( a + y \right)\] ,Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?


If \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?


If \[\sin \left( xy \right) + \frac{y}{x} = x^2 - y^2 , \text{ find}  \frac{dy}{dx}\] ?


If \[y = \left\{ \log_{\cos x} \sin x \right\} \left\{ \log_{\sin x} \cos x \right\}^{- 1} + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right), \text{ find } \frac{dy}{dx} \text{ at }x = \frac{\pi}{4}\] ?


Differentiate \[\left( 1 + \cos x \right)^x\] ?


Find  \[\frac{dy}{dx}\] \[y = e^x + {10}^x + x^x\] ?

 


If \[x^x + y^x = 1\], prove that \[\frac{dy}{dx} = - \left\{ \frac{x^x \left( 1 + \log x \right) + y^x \cdot \log y}{x \cdot y^\left( x - 1 \right)} \right\}\] ?


If \[y = x \sin y\] , prove that  \[\frac{dy}{dx} = \frac{y}{x \left( 1 - x \cos y \right)}\] ?

 


Find \[\frac{dy}{dx}\] ,When \[x = a \left( 1 - \cos \theta \right) \text{ and } y = a \left( \theta + \sin \theta \right) \text{ at } \theta  = \frac{\pi}{2}\] ?


Find \[\frac{dy}{dx}\] , when \[x = \frac{3 at}{1 + t^2}, \text{ and } y = \frac{3 a t^2}{1 + t^2}\] ?


If \[x = e^{\cos 2 t} \text{ and y }= e^{\sin 2 t} ,\] prove that \[\frac{dy}{dx} = - \frac{y \log x}{x \log y}\] ?


If \[f\left( x \right) = x + 1\] , then write the value of \[\frac{d}{dx} \left( fof \right) \left( x \right)\] ?


If \[- \frac{\pi}{2} < x < 0 \text{ and y } = \tan^{- 1} \sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}, \text{ find } \frac{dy}{dx}\] ?


If \[y = \log_a x, \text{ find } \frac{dy}{dx} \] ? 


If \[x^y = e^{x - y} ,\text{ then } \frac{dy}{dx}\] is __________ .


Given  \[f\left( x \right) = 4 x^8 , \text { then }\] _________________ .


For the curve \[\sqrt{x} + \sqrt{y} = 1, \frac{dy}{dx}\text {  at } \left( 1/4, 1/4 \right)\text {  is }\] _____________ .


If \[f\left( x \right) = \sqrt{x^2 + 6x + 9}, \text { then } f'\left( x \right)\] is equal to ______________ .


Find the second order derivatives of the following function x3 log ?


If y = ex cos x, prove that \[\frac{d^2 y}{d x^2} = 2 e^x \cos \left( x + \frac{\pi}{2} \right)\] ?


\[\text { If x } = a \sin t - b \cos t, y = a \cos t + b \sin t, \text { prove that } \frac{d^2 y}{d x^2} = - \frac{x^2 + y^2}{y^3} \] ?


If y = a xn + 1 + bxn and \[x^2 \frac{d^2 y}{d x^2} = \lambda y\]  then write the value of λ ?


If x = at2, y = 2 at, then \[\frac{d^2 y}{d x^2} =\] 

 


If f(x) = (cos x + i sin x) (cos 2x + i sin 2x) (cos 3x + i sin 3x) ...... (cos nx + i sin nx) and f(1) = 1, then f'' (1) is equal to

 


If \[y = \log_e \left( \frac{x}{a + bx} \right)^x\] then x3 y2 =

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×