Advertisements
Advertisements
प्रश्न
If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum, when the angle between them is 60º.
उत्तर
Let ABC be the right angled triangle with
base b and hypotenuse h.
Given that b+h=k
Let A be the area of the right triangle.
`A=1/2 xxbxxsqrt(h^2-b^2)`
`A^2=1/4b^2(h^2-b^2)`
`A^2=b^2/4((k-b)^2-b^2) [because h=k-b]`
`A^2=b^2/4(k^2+b^2-2kb-b^2)`
`A^2=b^2/4(k^2-2kb)`
`A^2=(b^2k^2-2kb^3)/4`
``Differentiating the above function with respect to be, we have
`2A (dA)/(db)=(2bk^2-6kb^2)/4.......(1)`
`=>(dA)/(db)=(bk^2-3kb^2)/(2A)`
For the area to be maximum, we have
`(dA)/(db)=0`
`=>bk^2-3kb^2=0`
`bk=3b^2`
`b=k/3`
Again differentiating the function in equation (1), with respect to b, we have
`2((dA)/(db))2+2A(d^2A)/(db^2)=(2k^2-12kb)/4.....(2)`
Now substituting 0 and b in equation (2), we have
`2A(d^2A)/(db^2)=(2k^2-12k(k/3))/4`
`2A(d^2A)/(db^2)=(6k^2-12k^2)/12`
`2A(d^2A)/(db^2)=-k^2/2`
`2A(d^2A)/(db^2)=-k^2/(4A)<0`
Thus area is maximum at b=k/3.
Now, ` h=k-k/3=(2k)/3`
Let be he angle between the base of triangle and hypotenuse of the right triangle.
Thus, `costheta=b/h=(k/3)/((2k)/3)=1/2`
`=>theta=cos^(-1)(1/2)=pi/3`
APPEARS IN
संबंधित प्रश्न
Differentiate tan (x° + 45°) ?
Differentiate etan x ?
Differentiate \[\sqrt{\frac{1 + x}{1 - x}}\] ?
Differentiate \[\tan \left( e^{\sin x }\right)\] ?
Differentiate \[\sqrt{\tan^{- 1} \left( \frac{x}{2} \right)}\] ?
Differentiate \[\log \left( 3x + 2 \right) - x^2 \log \left( 2x - 1 \right)\] ?
Differentiate \[3 e^{- 3x} \log \left( 1 + x \right)\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{1 + \sqrt{1 - x^2}} \right\}, - 1 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{4x}{1 - 4 x^2} \right), - \frac{1}{2} < x < \frac{1}{2}\] ?
If \[y = \cot^{- 1} \left\{ \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right\}\], show that \[\frac{dy}{dx}\] is independent of x. ?
Differentiate \[\sin^{- 1} \left\{ \frac{2^{x + 1} \cdot 3^x}{1 + \left( 36 \right)^x} \right\}\] with respect to x ?
Differentiate \[x^{1/x}\] with respect to x.
Find \[\frac{dy}{dx}\] \[y = \sin x \sin 2x \sin 3x \sin 4x\] ?
If \[y = x \sin \left( a + y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?
If \[\left( \cos x \right)^y = \left( \cos y \right)^x , \text{ find } \frac{dy}{dx}\] ?
\[y = \left( \sin x \right)^{\left( \sin x \right)^{\left( \sin x \right)^{. . . \infty}}} \],prove that \[\frac{y^2 \cot x}{\left( 1 - y \log \sin x \right)}\] ?
Find \[\frac{dy}{dx}\] ,When \[x = e^\theta \left( \theta + \frac{1}{\theta} \right) \text{ and } y = e^{- \theta} \left( \theta - \frac{1}{\theta} \right)\] ?
Find \[\frac{dy}{dx}\] , when \[x = \frac{1 - t^2}{1 + t^2} \text{ and y } = \frac{2 t}{1 + t^2}\] ?
If \[x = 2 \cos \theta - \cos 2 \theta \text{ and y} = 2 \sin \theta - \sin 2 \theta\], prove that \[\frac{dy}{dx} = \tan \left( \frac{3 \theta}{2} \right)\] ?
Differentiate \[\cos^{- 1} \left( 4 x^3 - 3x \right)\] with respect to \[\tan^{- 1} \left( \frac{\sqrt{1 - x^2}}{x} \right), \text{ if }\frac{1}{2} < x < 1\] ?
Differentiate \[\sin^{- 1} \left( 2 ax \sqrt{1 - a^2 x^2} \right)\] with respect to \[\sqrt{1 - a^2 x^2}, \text{ if }-\frac{1}{\sqrt{2}} < ax < \frac{1}{\sqrt{2}}\] ?
Let \[\cup = \sin^{- 1} \left( \frac{2 x}{1 + x^2} \right) \text { and }V = \tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text { then } \frac{d \cup}{dV} =\] ____________ .
If \[y = \sqrt{\sin x + y},\text { then } \frac{dy}{dx} =\] __________ .
If \[y = \log \sqrt{\tan x}\] then the value of \[\frac{dy}{dx}\text { at }x = \frac{\pi}{4}\] is given by __________ .
Find the second order derivatives of the following function log (log x) ?
If \[y = e^{\tan^{- 1} x}\] prove that (1 + x2)y2 + (2x − 1)y1 = 0 ?
If x = f(t) cos t − f' (t) sin t and y = f(t) sin t + f'(t) cos t, then\[\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2 =\]
If xy − loge y = 1 satisfies the equation \[x\left( y y_2 + y_1^2 \right) - y_2 + \lambda y y_1 = 0\]
If p, q, r, s are real number and pr = 2(q + s) then for the equation x2 + px + q = 0 and x2 + rx + s = 0 which of the following statement is true?