English

If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum, when the angle between them is 60º. - Mathematics

Advertisements
Advertisements

Question

If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum, when the angle between them is 60º.

Solution

Let ABC be the right angled triangle with
base b and hypotenuse h.

Given that b+h=k

Let A be the area of the right triangle.

`A=1/2 xxbxxsqrt(h^2-b^2)`

`A^2=1/4b^2(h^2-b^2)`

`A^2=b^2/4((k-b)^2-b^2) [because h=k-b]`

`A^2=b^2/4(k^2+b^2-2kb-b^2)`

`A^2=b^2/4(k^2-2kb)`

`A^2=(b^2k^2-2kb^3)/4`

``Differentiating the above function with respect to be, we have

`2A (dA)/(db)=(2bk^2-6kb^2)/4.......(1)`

`=>(dA)/(db)=(bk^2-3kb^2)/(2A)`

For the area to be maximum, we have

`(dA)/(db)=0`

`=>bk^2-3kb^2=0`

`bk=3b^2`

`b=k/3`

Again differentiating the function in equation (1), with respect to b, we have

`2((dA)/(db))2+2A(d^2A)/(db^2)=(2k^2-12kb)/4.....(2)`

Now substituting 0 and b in equation (2), we have

`2A(d^2A)/(db^2)=(2k^2-12k(k/3))/4`

`2A(d^2A)/(db^2)=(6k^2-12k^2)/12`

`2A(d^2A)/(db^2)=-k^2/2`

`2A(d^2A)/(db^2)=-k^2/(4A)<0`

Thus area is maximum at b=k/3.

Now, ` h=k-k/3=(2k)/3`

Let  be he angle between the base of triangle and hypotenuse of the right triangle.

Thus, `costheta=b/h=(k/3)/((2k)/3)=1/2`

`=>theta=cos^(-1)(1/2)=pi/3`

shaalaa.com
  Is there an error in this question or solution?
2013-2014 (March) All India Set 3

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Differentiate the following functions from first principles log cos x ?


Differentiate sin2 (2x + 1) ?


Differentiate \[3^{x \log x}\] ?


Differentiate (log sin x)?


If \[y = \sqrt{a^2 - x^2}\] prove that  \[y\frac{dy}{dx} + x = 0\] ?


Differentiate  \[\tan^{- 1} \left( \frac{\sqrt{x} + \sqrt{a}}{1 - \sqrt{xa}} \right)\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{2^{x + 1} \cdot 3^x}{1 + \left( 36 \right)^x} \right\}\]  with respect to x ?


If \[\log \sqrt{x^2 + y^2} = \tan^{- 1} \left( \frac{y}{x} \right)\] Prove that \[\frac{dy}{dx} = \frac{x + y}{x - y}\] ?


If \[xy \log \left( x + y \right) = 1\] ,Prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?


If \[y = x \sin y\] , Prove that \[\frac{dy}{dx} = \frac{\sin y}{\left( 1 - x \cos y \right)}\] ?


If \[x^{13} y^7 = \left( x + y \right)^{20}\] prove that \[\frac{dy}{dx} = \frac{y}{x}\] ?


If  \[\left( \sin x \right)^y = x + y\] , prove that \[\frac{dy}{dx} = \frac{1 - \left( x + y \right) y \cot x}{\left( x + y \right) \log \sin x - 1}\] ?

 


If  \[xy = e^{x - y} , \text{ find } \frac{dy}{dx}\] ?

 


If  \[\left( \cos x \right)^y = \left( \cos y \right)^x , \text{ find } \frac{dy}{dx}\] ?

 


\[\text{ If }y = x^{\tan x} + \sqrt{\frac{x^2 + 1}{2}}, \text{ find} \frac{dy}{dx}\] ?

 


If  \[x = 2 \cos \theta - \cos 2 \theta \text{ and y} = 2 \sin \theta - \sin 2 \theta\], prove that \[\frac{dy}{dx} = \tan \left( \frac{3 \theta}{2} \right)\] ?


Differentiate log (1 + x2) with respect to tan−1 x ?


Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2 \sqrt{2}}, \frac{1}{\sqrt{2 \sqrt{2}}} \right)\] ?

If f (x) = loge (loge x), then write the value of `f' (e)` ?


If \[\pi \leq x \leq 2\pi \text { and y } = \cos^{- 1} \left( \cos x \right), \text { find } \frac{dy}{dx}\] ?


Given  \[f\left( x \right) = 4 x^8 , \text { then }\] _________________ .


If \[\sin \left( x + y \right) = \log \left( x + y \right), \text { then } \frac{dy}{dx} =\] ___________ .


If \[f\left( x \right) = \left( \frac{x^l}{x^m} \right)^{l + m} \left( \frac{x^m}{x^n} \right)^{m + n} \left( \frac{x^n}{x^l} \right)^{n + 1}\] the f' (x) is equal to _____________ .


Find the second order derivatives of the following function e6x cos 3x  ?


If `x = sin(1/2 log y)` show that (1 − x2)y2 − xy1 − a2y = 0.


If x = a cos nt − b sin nt and \[\frac{d^2 x}{dt} = \lambda x\]  then find the value of λ ?


If y = |x − x2|, then find \[\frac{d^2 y}{d x^2}\] ?


If x = t2, y = t3, then \[\frac{d^2 y}{d x^2} =\] 

 


If \[y = \tan^{- 1} \left\{ \frac{\log_e \left( e/ x^2 \right)}{\log_e \left( e x^2 \right)} \right\} + \tan^{- 1} \left( \frac{3 + 2 \log_e x}{1 - 6 \log_e x} \right)\], then \[\frac{d^2 y}{d x^2} =\]

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×