Advertisements
Advertisements
Question
Given \[f\left( x \right) = 4 x^8 , \text { then }\] _________________ .
Options
\[f'\left( \frac{1}{2} \right) = f'\left( - \frac{1}{2} \right)\]
\[f\left( \frac{1}{2} \right) = - f'\left( - \frac{1}{2} \right)\]
\[f\left( - \frac{1}{2} \right) = f\left( - \frac{1}{2} \right)\]
\[f\left( \frac{1}{2} \right) = f'\left( - \frac{1}{2} \right)\]
Solution
\[\ f\left( \frac{- 1}{2} \right) = f\left( \frac{- 1}{2} \right)\]
\[\text{ We have }, f\left( x \right) = 4 x^8 \]
\[ \Rightarrow f'\left( x \right) = 32 x^7 \]
\[\text{ Now,} f\left( \frac{1}{2} \right) = 4 \left( \frac{1}{2} \right)^8 = 4\left( \frac{1}{256} \right) = \frac{1}{64}\]
\[ f\left( - \frac{1}{2} \right) = 4 \left( - \frac{1}{2} \right)^8 = 4\left( \frac{1}{256} \right) = \frac{1}{64}\]
\[f'\left( \frac{1}{2} \right) = 32 \left( \frac{1}{2} \right)^7 = 32\left( \frac{1}{128} \right) = \frac{1}{4}\]
\[f'\left( - \frac{1}{2} \right) = 32 \left( - \frac{1}{2} \right)^7 = - 32\left( \frac{1}{128} \right) = - \frac{1}{4}\]
APPEARS IN
RELATED QUESTIONS
Differentiate etan x ?
Differentiate `2^(x^3)` ?
Differentiate \[\tan^{- 1} \left( e^x \right)\] ?
Differentiate \[\frac{2^x \cos x}{\left( x^2 + 3 \right)^2}\] ?
If \[y = \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}\] , prove that \[\left( 1 - x^2 \right) \frac{dy}{dx} = x + \frac{y}{x}\] ?
If \[y = \frac{e^x - e^{- x}}{e^x + e^{- x}}\] .prove that \[\frac{dy}{dx} = 1 - y^2\] ?
If \[y = e^x \cos x\] ,prove that \[\frac{dy}{dx} = \sqrt{2} e^x \cdot \cos \left( x + \frac{\pi}{4} \right)\] ?
If \[y = \sqrt{a^2 - x^2}\] prove that \[y\frac{dy}{dx} + x = 0\] ?
Differentiate \[\tan^{- 1} \left( \frac{\sin x}{1 + \cos x} \right), - \pi < x < \pi\] ?
Differentiate \[\cos^{- 1} \left( \frac{1 - x^{2n}}{1 + x^{2n}} \right), < x < \infty\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + b \tan x}{b - a \tan x} \right)\] ?
Find \[\frac{dy}{dx}\] in the following case: \[y^3 - 3x y^2 = x^3 + 3 x^2 y\] ?
Find \[\frac{dy}{dx}\] in the following case \[4x + 3y = \log \left( 4x - 3y \right)\] ?
Find \[\frac{dy}{dx}\] in the following case \[\sin xy + \cos \left( x + y \right) = 1\] ?
If \[x y^2 = 1,\] prove that \[2\frac{dy}{dx} + y^3 = 0\] ?
Differentiate \[x^{\cos^{- 1} x}\] ?
Differentiate \[x^{x^2 - 3} + \left( x - 3 \right)^{x^2}\] ?
Find \[\frac{dy}{dx}\] \[y = \frac{e^{ax} \cdot \sec x \cdot \log x}{\sqrt{1 - 2x}}\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \sin x \right)^{\cos x} + \left( \cos x \right)^{\sin x}\] ?
If `y=(sinx)^x + sin^-1 sqrtx "then find" dy/dx`
If \[e^y = y^x ,\] prove that\[\frac{dy}{dx} = \frac{\left( \log y \right)^2}{\log y - 1}\] ?
\[y = \left( \sin x \right)^{\left( \sin x \right)^{\left( \sin x \right)^{. . . \infty}}} \],prove that \[\frac{y^2 \cot x}{\left( 1 - y \log \sin x \right)}\] ?
\[\text { If }x = \cos t\left( 3 - 2 \cos^2 t \right), y = \sin t\left( 3 - 2 \sin^2 t \right) \text { find the value of } \frac{dy}{dx}\text{ at }t = \frac{\pi}{4}\] ?
Differentiate (log x)x with respect to log x ?
If \[y = \log_a x, \text{ find } \frac{dy}{dx} \] ?
If \[y = \log \left| 3x \right|, x \neq 0, \text{ find } \frac{dy}{dx} \] ?
For the curve \[\sqrt{x} + \sqrt{y} = 1, \frac{dy}{dx}\text { at } \left( 1/4, 1/4 \right)\text { is }\] _____________ .
Find the second order derivatives of the following function tan−1 x ?
If x = sin t, y = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?
If y = cosec−1 x, x >1, then show that \[x\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + \left( 2 x^2 - 1 \right)\frac{dy}{dx} = 0\] ?
\[ \text { If x } = a \sin t \text { and y } = a\left( \cos t + \log \tan\frac{t}{2} \right), \text { find } \frac{d^2 y}{d x^2} \] ?
If y = |x − x2|, then find \[\frac{d^2 y}{d x^2}\] ?
If x = t2, y = t3, then \[\frac{d^2 y}{d x^2} =\]
If xy − loge y = 1 satisfies the equation \[x\left( y y_2 + y_1^2 \right) - y_2 + \lambda y y_1 = 0\]
If y2 = ax2 + bx + c, then \[y^3 \frac{d^2 y}{d x^2}\] is
Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base.