Advertisements
Advertisements
Question
Find \[\frac{dy}{dx}\] in the following case: \[y^3 - 3x y^2 = x^3 + 3 x^2 y\] ?
Solution
\[\text{ We have }, y^3 - 3x y^2 = x^3 + 3 x^2 y\]
Differentiating with respect to x, we get,
\[\Rightarrow \frac{d}{dx}\left( y^3 \right) - \frac{d}{dx}\left( 3x y^2 \right) = \frac{d}{dx}\left( x^3 \right) + \frac{d}{dx}\left( 3 x^2 y \right)\]
\[ \Rightarrow 3 y^2 \frac{d y}{d x} - 3\left[ x\frac{d}{dx}\left( y^2 \right) + y^2 \frac{d}{dx}\left( x \right) \right] = 3 x^2 + 3\left[ x^2 \frac{d}{dx}\left( y \right) + y\frac{d}{dx}\left( x^2 \right) \right] \left[ \text{ Using product rule } \right]\]
\[ \Rightarrow 3 y^2 \frac{d y}{d x} - 3\left[ x\left( 2y \right)\frac{d y}{d x} + y^2 \right] = 3 x^2 + 3\left[ x^2 \frac{d y}{d x} + y\left( 2x \right) \right]\]
\[ \Rightarrow 3 y^2 \frac{d y}{d x} - 6xy\frac{d y}{d x} - 3 y^2 = 3 x^2 + 3 x^2 \frac{d y}{d x} + 6xy\]
\[ \Rightarrow 3 y^2 \frac{d y}{d x} - 6xy\frac{d y}{d x} - 3 x^2 \frac{d y}{d x} = 3 x^2 + 6xy + 3 y^2 \]
\[ \Rightarrow 3\frac{d y}{d x}\left( y^2 - 2xy - x^2 \right) = 3\left( x^2 + 2xy + y^2 \right)\]
\[ \Rightarrow \frac{d y}{d x} = \frac{3 \left( x + y \right)^2}{3\left( y^2 - 2xy - x^2 \right)}\]
\[ \Rightarrow \frac{d y}{d x} = \frac{\left( x + y \right)^2}{y^2 - 2xy - x^2}\]
APPEARS IN
RELATED QUESTIONS
If the function f(x)=2x3−9mx2+12m2x+1, where m>0 attains its maximum and minimum at p and q respectively such that p2=q, then find the value of m.
Differentiate the following functions from first principles e−x.
Differentiate tan 5x° ?
Differentiate \[3^{x \log x}\] ?
Differentiate \[\frac{x^2 + 2}{\sqrt{\cos x}}\] ?
Differentiate \[\sin^{- 1} \left\{ \sqrt{\frac{1 - x}{2}} \right\}, 0 < x < 1\] ?
Differentiate \[\cos^{- 1} \left\{ \frac{\cos x + \sin x}{\sqrt{2}} \right\}, - \frac{\pi}{4} < x < \frac{\pi}{4}\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{1 + \sqrt{1 - x^2}} \right\}, - 1 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{\sin x}{1 + \cos x} \right), - \pi < x < \pi\] ?
Differentiate \[\tan^{- 1} \left( \frac{5 x}{1 - 6 x^2} \right), - \frac{1}{\sqrt{6}} < x < \frac{1}{\sqrt{6}}\] ?
Find \[\frac{dy}{dx}\] in the following case \[\tan^{- 1} \left( x^2 + y^2 \right) = a\] ?
Differentiate \[x^{1/x}\] with respect to x.
Differentiate \[e^{x \log x}\] ?
Differentiate \[\sin \left( x^x \right)\] ?
Differentiate \[\left( x^x \right) \sqrt{x}\] ?
Differentiate \[x^\left( \sin x - \cos x \right) + \frac{x^2 - 1}{x^2 + 1}\] ?
Differentiate \[e^{\sin x }+ \left( \tan x \right)^x\] ?
Find \[\frac{dy}{dx}\]
\[y = x^x + x^{1/x}\] ?
If \[x^m y^n = 1\] , prove that \[\frac{dy}{dx} = - \frac{my}{nx}\] ?
If \[e^{x + y} - x = 0\] ,prove that \[\frac{dy}{dx} = \frac{1 - x}{x}\] ?
If \[y = \sqrt{x + \sqrt{x + \sqrt{x + . . . to \infty ,}}}\] prove that \[\frac{dy}{dx} = \frac{1}{2 y - 1}\] ?
If \[y = \sqrt{\tan x + \sqrt{\tan x + \sqrt{\tan x + . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sec^2 x}{2 y - 1}\] ?
Find \[\frac{dy}{dx}\] , when \[x = \frac{3 at}{1 + t^2}, \text{ and } y = \frac{3 a t^2}{1 + t^2}\] ?
Differentiate x2 with respect to x3
Differentiate log (1 + x2) with respect to tan−1 x ?
Differentiate \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\] \[x \in \left( - 1, 0 \right)\] ?
Differentiate \[\left( \cos x \right)^{\sin x }\] with respect to \[\left( \sin x \right)^{\cos x }\]?
If \[\sqrt{1 - x^6} + \sqrt{1 - y^6} = a^3 \left( x^3 - y^3 \right)\] then \[\frac{dy}{dx}\] is equal to ____________ .
Find the second order derivatives of the following function ex sin 5x ?
Find the second order derivatives of the following function x3 log x ?
If x = a (θ − sin θ), y = a (1 + cos θ) prove that, find \[\frac{d^2 y}{d x^2}\] ?
If \[y = \left[ \log \left( x + \sqrt{x^2 + 1} \right) \right]^2\] show that \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 2\] ?
If y = (cot−1 x)2, prove that y2(x2 + 1)2 + 2x (x2 + 1) y1 = 2 ?
\[ \text { If x } = a \sin t \text { and y } = a\left( \cos t + \log \tan\frac{t}{2} \right), \text { find } \frac{d^2 y}{d x^2} \] ?
\[\text { Find A and B so that y = A } \sin3x + B \cos3x \text { satisfies the equation }\]
\[\frac{d^2 y}{d x^2} + 4\frac{d y}{d x} + 3y = 10 \cos3x \] ?
If x = 2 at, y = at2, where a is a constant, then \[\frac{d^2 y}{d x^2} \text { at x } = \frac{1}{2}\] is
If y = sin (m sin−1 x), then (1 − x2) y2 − xy1 is equal to
Range of 'a' for which x3 – 12x + [a] = 0 has exactly one real root is (–∞, p) ∪ [q, ∞), then ||p| – |q|| is ______.