Advertisements
Advertisements
Question
Differentiate \[\tan^{- 1} \left\{ \frac{x}{1 + \sqrt{1 - x^2}} \right\}, - 1 < x < 1\] ?
Solution
\[\text{ Let, y } = \tan^{- 1} \left\{ \frac{x}{1 + \sqrt{1 - x^2}} \right\}\]
\[\text{Put x } = \sin\theta\]
\[ y = \tan^{- 1} \left\{ \frac{\sin\theta}{1 + \sqrt{1 - \sin^2 \theta}} \right\}\]
\[ y = \tan^{- 1} \left( \frac{\sin\theta}{1 + \cos\theta} \right) \]
\[ y = \tan^{- 1} \left\{ \frac{2 \sin\frac{\theta}{2}\cos\frac{\theta}{2}}{2 \cos^2 \frac{\theta}{2}} \right\}\]
\[ y = \tan^{- 1} \left\{ \tan \frac{\theta}{2} \right\} . . . \left( i \right)\]
\[\text{ Here }, - 1 < x < 1\]
\[ \Rightarrow - 1 < \sin\theta < 1\]
\[ \Rightarrow - \frac{\pi}{2} < \theta < \frac{\pi}{2}\]
\[ \Rightarrow - \frac{\pi}{4} < \frac{\theta}{2} < \frac{\pi}{4}\]
\[\text{ So, from equation } \left( i \right), \]
\[ y = \frac{\theta}{2} \left[ Since, \tan^{- 1} \left( \tan\theta \right) = \theta, \text{ if }\theta \in \left[ - \frac{\pi}{2}, \frac{\pi}{2} \right] \right]\]
\[ y = \frac{1}{2} \sin^{- 1} x \left[ \text{ Since, x } = \sin\theta \right]\]
\[\text{ Differentiating it with respect to x }, \]
\[\frac{d y}{d x} = \frac{1}{2\sqrt{1 - x^2}}\]
APPEARS IN
RELATED QUESTIONS
Differentiate the following functions from first principles e−x.
Differentiate the following functions from first principles \[e^\sqrt{2x}\].
Differentiate the following functions from first principles sin−1 (2x + 3) ?
Differentiate sin (log x) ?
Differentiate \[\sqrt{\frac{1 + \sin x}{1 - \sin x}}\] ?
Differentiate \[\sin \left( 2 \sin^{- 1} x \right)\] ?
Differentiate \[e^{\tan^{- 1}} \sqrt{x}\] ?
Differentiate \[x \sin 2x + 5^x + k^k + \left( \tan^2 x \right)^3\] ?
Differentiate \[\log \left( \cos x^2 \right)\] ?
If \[y = \frac{1}{2} \log \left( \frac{1 - \cos 2x }{1 + \cos 2x} \right)\] , prove that \[\frac{ dy }{ dx } = 2 \text{cosec }2x \] ?
If \[y = \sqrt{x^2 + a^2}\] prove that \[y\frac{dy}{dx} - x = 0\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{\sin x + \cos x}{\sqrt{2}} \right\}, - \frac{3 \pi}{4} < x < \frac{\pi}{4}\] ?
Differentiate \[\sin^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?
If \[y = \cot^{- 1} \left\{ \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right\}\], show that \[\frac{dy}{dx}\] is independent of x. ?
If \[y = \sin^{- 1} \left( 6x\sqrt{1 - 9 x^2} \right), - \frac{1}{3\sqrt{2}} < x < \frac{1}{3\sqrt{2}}\] \[\frac{dy}{dx} \] ?
If \[x y^2 = 1,\] prove that \[2\frac{dy}{dx} + y^3 = 0\] ?
If \[x \sqrt{1 + y} + y \sqrt{1 + x} = 0\] , prove that \[\left( 1 + x \right)^2 \frac{dy}{dx} + 1 = 0\] ?
If \[\sin \left( xy \right) + \frac{y}{x} = x^2 - y^2 , \text{ find} \frac{dy}{dx}\] ?
Differentiate \[{10}^\left( {10}^x \right)\] ?
Differentiate \[\left( \tan x \right)^{1/x}\] ?
Differentiate \[x^{x \cos x +} \frac{x^2 + 1}{x^2 - 1}\] ?
If \[y = \left( \cos x \right)^{\left( \cos x \right)^{\left( \cos x \right) . . . \infty}}\],prove that \[\frac{dy}{dx} = - \frac{y^2 \tan x}{\left( 1 - y \log \cos x \right)}\]?
Find \[\frac{dy}{dx}\] , when \[x = b \sin^2 \theta \text{ and } y = a \cos^2 \theta\] ?
If \[x = e^{\cos 2 t} \text{ and y }= e^{\sin 2 t} ,\] prove that \[\frac{dy}{dx} = - \frac{y \log x}{x \log y}\] ?
If \[x = \frac{1 + \log t}{t^2}, y = \frac{3 + 2\log t}{t}, \text { find } \frac{dy}{dx}\] ?
Differentiate \[\tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right)\] with respect to \[\sec^{- 1} x\] ?
If \[- \frac{\pi}{2} < x < 0 \text{ and y } = \tan^{- 1} \sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}, \text{ find } \frac{dy}{dx}\] ?
The derivative of the function \[\cot^{- 1} \left| \left( \cos 2 x \right)^{1/2} \right| \text{ at } x = \pi/6 \text{ is }\] ______ .
If \[x^y = e^{x - y} ,\text{ then } \frac{dy}{dx}\] is __________ .
For the curve \[\sqrt{x} + \sqrt{y} = 1, \frac{dy}{dx}\text { at } \left( 1/4, 1/4 \right)\text { is }\] _____________ .
If \[\sin \left( x + y \right) = \log \left( x + y \right), \text { then } \frac{dy}{dx} =\] ___________ .
If x = a(1 − cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = - \frac{1}{a}\text { at } \theta = \frac{\pi}{2}\] ?
If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \cdot \frac{dy}{dx} + y \cos^2 x = 0\] ?
If \[y = \left[ \log \left( x + \sqrt{x^2 + 1} \right) \right]^2\] show that \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 2\] ?
If y = (cot−1 x)2, prove that y2(x2 + 1)2 + 2x (x2 + 1) y1 = 2 ?
If x = a cos nt − b sin nt, then \[\frac{d^2 x}{d t^2}\] is
If y = a sin mx + b cos mx, then \[\frac{d^2 y}{d x^2}\] is equal to
If \[\frac{d}{dx}\left[ x^n - a_1 x^{n - 1} + a_2 x^{n - 2} + . . . + \left( - 1 \right)^n a_n \right] e^x = x^n e^x\] then the value of ar, 0 < r ≤ n, is equal to
If y = xx, prove that \[\frac{d^2 y}{d x^2} - \frac{1}{y} \left( \frac{dy}{dx} \right)^2 - \frac{y}{x} = 0 .\]