English

If Y = Xx, Prove that D 2 Y D X 2 − 1 Y ( D Y D X ) 2 − Y X = 0 . - Mathematics

Advertisements
Advertisements

Question

If y = xx, prove that \[\frac{d^2 y}{d x^2} - \frac{1}{y} \left( \frac{dy}{dx} \right)^2 - \frac{y}{x} = 0 .\]

Solution

\[\text { Given,} y = x^x \]

\[\text { Taking logarithm on both sides, we get }\]

\[\log y = x \log x\]

\[\text { Differentiating both sides w . r . t . x, we get }\]

\[\frac{1}{y}\frac{dy}{dx} = x \times \frac{1}{x} + \log x\]

\[ \Rightarrow \frac{dy}{dx} = y(1 + \log x)\]

\[ \Rightarrow \frac{dy}{dx} = x^x (1 + \log x) . . . \left( 1 \right)\]

\[ \Rightarrow \left( \frac{dy}{dx} \right)^2 = x^{2x} \left( 1 + \log x \right)^2\]

\[\text { Now }, \frac{d^2 y}{d x^2} = x^x \times \frac{1}{x} + \left( 1 + \log x \right)\frac{d}{dx}\left( x^x \right)\]

\[ \Rightarrow \frac{d^2 y}{d x^2} = x^{x - 1} + x^x \left( 1 + \log x \right)^2 \left[ \text { Using } \left( 1 \right) \right] . . . \left( 2 \right)\]

\[ \therefore \frac{d^2 y}{d x^2} - \frac{1}{y} \left( \frac{dy}{dx} \right)^2 - \frac{y}{x}\]

\[ = x^{x - 1} + x^x \left( 1 + \log x \right)^2 - \frac{x^{2x} \left( 1 + \log x \right)^2}{x^x} - \frac{x^x}{x}\]

\[ = x^{x - 1} + x^x \left( 1 + \log x \right)^2 - x^x \left( 1 + \log x \right)^2 - x^{x - 1} \]

\[ = 0\]

shaalaa.com
  Is there an error in this question or solution?
2013-2014 (March) Delhi Set 2

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Differentiate the following functions from first principles x2ex ?


Differentiate \[\frac{3 x^2 \sin x}{\sqrt{7 - x^2}}\] ?


Differentiate \[\frac{e^x \sin x}{\left( x^2 + 2 \right)^3}\] ?


Differentiate \[\cos \left( \log x \right)^2\] ?


If \[y = \frac{x}{x + 2}\]  , prove tha \[x\frac{dy}{dx} = \left( 1 - y \right) y\] ? 


Differentiate  \[\tan^{- 1} \left( \frac{\sqrt{x} + \sqrt{a}}{1 - \sqrt{xa}} \right)\] ?


Differentiate 

\[\tan^{- 1} \left( \frac{\cos x + \sin x}{\cos x - \sin x} \right), \frac{\pi}{4} < x < \frac{\pi}{4}\] ?


If \[y = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), x > 0\] ,prove that \[\frac{dy}{dx} = \frac{4}{1 + x^2} \] ? 


Find  \[\frac{dy}{dx}\] in the following case \[4x + 3y = \log \left( 4x - 3y \right)\] ?

 


If \[y = x \sin y\] , Prove that \[\frac{dy}{dx} = \frac{\sin y}{\left( 1 - x \cos y \right)}\] ?


Differentiate \[x^{1/x}\]  with respect to x.


Differentiate  \[\left( x^x \right) \sqrt{x}\] ?


Differentiate \[\left( \cos x \right)^x + \left( \sin x \right)^{1/x}\] ?


If \[\left( \sin x \right)^y = \left( \cos y \right)^x ,\], prove that \[\frac{dy}{dx} = \frac{\log \cos y - y cot x}{\log \sin x + x \tan y}\] ?


If  \[\left( \sin x \right)^y = x + y\] , prove that \[\frac{dy}{dx} = \frac{1 - \left( x + y \right) y \cot x}{\left( x + y \right) \log \sin x - 1}\] ?

 


If \[y = x \sin y\] , prove that  \[\frac{dy}{dx} = \frac{y}{x \left( 1 - x \cos y \right)}\] ?

 


\[\text{ If }\cos y = x\cos\left( a + y \right),\text{  where } \cos a \neq \pm 1, \text{ prove that } \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\] ?

Let g (x) be the inverse of an invertible function f (x) which is derivable at x = 3. If f (3) = 9 and `f' (3) = 9`, write the value of `g' (9)`.


If \[y = \tan^{- 1} \left( \frac{1 - x}{1 + x} \right), \text{ find} \frac{dy}{dx}\]  ?


If f (x) is an even function, then write whether `f' (x)` is even or odd ?


If f (x) = logx2 (log x), the `f' (x)` at x = e is ____________ .


If \[\sin y = x \sin \left( a + y \right), \text { then }\frac{dy}{dx} \text { is}\] ____________ .


If \[y = \sqrt{\sin x + y}, \text { then }\frac{dy}{dx} \text { equals }\] ______________ .


If y = 2 sin x + 3 cos x, show that \[\frac{d^2 y}{d x^2} + y = 0\] ?


If x = cos θ, y = sin3 θ, prove that \[y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 = 3 \sin^2 \theta\left( 5 \cos^2 \theta - 1 \right)\] ?


If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =


If xy − loge y = 1 satisfies the equation \[x\left( y y_2 + y_1^2 \right) - y_2 + \lambda y y_1 = 0\]

 


If x = a (1 + cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = \frac{- 1}{a}at \theta = \frac{\pi}{2}\]


If p, q, r, s are real number and pr = 2(q + s) then for the equation x2 + px + q = 0 and x2 + rx + s = 0 which of the following statement is true?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×