Advertisements
Advertisements
Question
If x = cos θ, y = sin3 θ, prove that \[y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 = 3 \sin^2 \theta\left( 5 \cos^2 \theta - 1 \right)\] ?
Solution
Here,
\[x = \cos\theta \text { and y } = \sin^3 \theta\]
\[\text { Differentiating w . r . t }. \theta, \text { we get }\]
\[\frac{d x}{d \theta} = - \sin\theta \text { and } \frac{d y}{d \theta} = 3 \sin^2 \theta \cos\theta\]
\[ \therefore \frac{d y}{d x} = \frac{3 \sin^2 \theta \cos\theta}{- \sin\theta} = - 3\sin\theta \cos\theta\]
\[\text { Differentiating w . r . t . x, we get }\]
\[\frac{d^2 y}{d x^2} = \left( - 3 \cos^2 \theta + 3 \sin^2 \theta \right)\frac{d \theta}{d x} = \frac{\left( - 3 \cos^2 \theta + 3 \sin^2 \theta \right)}{- \sin\theta}\]
\[\text { Now,} \]
\[\text { LHS = y }\frac{d^2 y}{d x^2} + \left( \frac{d y}{d x} \right)^2 \]
\[ = \sin^3 \theta \times \frac{\left( - 3 \cos^2 \theta + 3 \sin^2 \theta \right)}{- \sin\theta} + \left( - 3\sin\theta \cos\theta \right)^2 \]
\[ = 3 \sin^2 \theta \cos^2 \theta - 3 \sin^4 \theta + 9 \sin^2 \theta \cos^2 \theta \]
\[ = 12 \sin^2 \theta \cos^2 \theta - 3 \sin^4 \theta \]
\[ = 3 \sin^2 \theta\left( 4 \cos^2 \theta - \sin^2 \theta \right) \]
\[ = 3 \sin^2 \theta\left( 5 \cos^2 \theta - 1 \right) [ \because \cos^2 + \sin^2 \theta = 1]\]
\[ = \text { RHS }\]
Hence proved.
APPEARS IN
RELATED QUESTIONS
If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum, when the angle between them is 60º.
Differentiate the following functions from first principles e−x.
Differentiate the following functions from first principles ecos x.
Differentiate the following functions from first principles log cosec x ?
Differentiate sin2 (2x + 1) ?
Differentiate \[\sqrt{\frac{1 - x^2}{1 + x^2}}\] ?
Differentiate \[\sin \left( 2 \sin^{- 1} x \right)\] ?
Differentiate \[e^{\tan^{- 1}} \sqrt{x}\] ?
Differentiate \[\left( \sin^{- 1} x^4 \right)^4\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{\sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?
Find \[\frac{dy}{dx}\] in the following case \[\sin xy + \cos \left( x + y \right) = 1\] ?
Differentiate \[x^{\sin x}\] ?
Differentiate \[{10}^{ \log \sin x }\] ?
Differentiate \[\left( \sin^{- 1} x \right)^x\] ?
Differentiate \[\left( x \cos x \right)^x + \left( x \sin x \right)^{1/x}\] ?
If \[y = \left( \cos x \right)^{\left( \cos x \right)^{\left( \cos x \right) . . . \infty}}\],prove that \[\frac{dy}{dx} = - \frac{y^2 \tan x}{\left( 1 - y \log \cos x \right)}\]?
Find \[\frac{dy}{dx}\] , when \[x = b \sin^2 \theta \text{ and } y = a \cos^2 \theta\] ?
If \[x = \frac{\sin^3 t}{\sqrt{\cos 2 t}}, y = \frac{\cos^3 t}{\sqrt{\cos t 2 t}}\] , find\[\frac{dy}{dx}\] ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( 0, \frac{1}{\sqrt{2}} \right)\] ?
If \[f\left( 1 \right) = 4, f'\left( 1 \right) = 2\] find the value of the derivative of \[\log \left( f\left( e^x \right) \right)\] w.r. to x at the point x = 0 ?
If \[f\left( 0 \right) = f\left( 1 \right) = 0, f'\left( 1 \right) = 2 \text { and y } = f \left( e^x \right) e^{f \left( x \right)}\] write the value of \[\frac{dy}{dx} \text{ at x } = 0\] ?
The derivative of \[\sec^{- 1} \left( \frac{1}{2 x^2 + 1} \right) \text { w . r . t }. \sqrt{1 + 3 x} \text { at } x = - 1/3\]
For the curve \[\sqrt{x} + \sqrt{y} = 1, \frac{dy}{dx}\text { at } \left( 1/4, 1/4 \right)\text { is }\] _____________ .
Find the second order derivatives of the following function ex sin 5x ?
Find the second order derivatives of the following function e6x cos 3x ?
If x = a cos θ, y = b sin θ, show that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?
If x = a (1 − cos3 θ), y = a sin3 θ, prove that \[\frac{d^2 y}{d x^2} = \frac{32}{27a} \text { at } \theta = \frac{\pi}{6}\] ?
If y = (sin−1 x)2, prove that (1 − x2)
\[\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?
If y = tan−1 x, show that \[\left( 1 + x^2 \right) \frac{d^2 y}{d x^2} + 2x\frac{dy}{dx} = 0\] ?
If y = ex (sin x + cos x) prove that \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\] ?
\[\text{ If x } = a\left( \cos t + \log \tan\frac{t}{2} \right) \text { and y } = a\left( \sin t \right), \text { evaluate } \frac{d^2 y}{d x^2} \text { at t } = \frac{\pi}{3} \] ?
\[\text { If }y = A e^{- kt} \cos\left( pt + c \right), \text { prove that } \frac{d^2 y}{d t^2} + 2k\frac{d y}{d t} + n^2 y = 0, \text { where } n^2 = p^2 + k^2 \] ?
If y = x + ex, find \[\frac{d^2 x}{d y^2}\] ?
If x = t2, y = t3, then \[\frac{d^2 y}{d x^2} =\]
If y = etan x, then (cos2 x)y2 =
Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base.
Range of 'a' for which x3 – 12x + [a] = 0 has exactly one real root is (–∞, p) ∪ [q, ∞), then ||p| – |q|| is ______.