हिंदी

If X = Cos θ, Y = Sin3 θ, Prove that Y D 2 Y D X 2 + ( D Y D X ) 2 = 3 Sin 2 θ ( 5 Cos 2 θ − 1 ) ? - Mathematics

Advertisements
Advertisements

प्रश्न

If x = cos θ, y = sin3 θ, prove that \[y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 = 3 \sin^2 \theta\left( 5 \cos^2 \theta - 1 \right)\] ?

उत्तर

Here,

\[x = \cos\theta \text { and y } = \sin^3 \theta\]

\[\text { Differentiating w . r . t }. \theta, \text { we get }\]

\[\frac{d x}{d \theta} = - \sin\theta \text { and } \frac{d y}{d \theta} = 3 \sin^2 \theta \cos\theta\]

\[ \therefore \frac{d y}{d x} = \frac{3 \sin^2 \theta \cos\theta}{- \sin\theta} = - 3\sin\theta \cos\theta\]

\[\text { Differentiating w . r . t . x, we get }\]

\[\frac{d^2 y}{d x^2} = \left( - 3 \cos^2 \theta + 3 \sin^2 \theta \right)\frac{d \theta}{d x} = \frac{\left( - 3 \cos^2 \theta + 3 \sin^2 \theta \right)}{- \sin\theta}\]

\[\text { Now,} \]

\[\text { LHS = y }\frac{d^2 y}{d x^2} + \left( \frac{d y}{d x} \right)^2 \]

\[ = \sin^3 \theta \times \frac{\left( - 3 \cos^2 \theta + 3 \sin^2 \theta \right)}{- \sin\theta} + \left( - 3\sin\theta \cos\theta \right)^2 \]

\[ = 3 \sin^2 \theta \cos^2 \theta - 3 \sin^4 \theta + 9 \sin^2 \theta \cos^2 \theta \]

\[ = 12 \sin^2 \theta \cos^2 \theta - 3 \sin^4 \theta \]

\[ = 3 \sin^2 \theta\left( 4 \cos^2 \theta - \sin^2 \theta \right) \]

\[ = 3 \sin^2 \theta\left( 5 \cos^2 \theta - 1 \right) [ \because \cos^2 + \sin^2 \theta = 1]\]

\[ = \text { RHS }\]

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Higher Order Derivatives - Exercise 12.1 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 12 Higher Order Derivatives
Exercise 12.1 | Q 17 | पृष्ठ १७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Differentiate tan (x° + 45°) ?


Differentiate \[\log \left( cosec x - \cot x \right)\] ?


Differentiate \[\tan^{- 1} \left( e^x \right)\] ?


Differentiate \[\left( \sin^{- 1} x^4 \right)^4\] ?


If \[y = e^x + e^{- x}\] prove that  \[\frac{dy}{dx} = \sqrt{y^2 - 4}\] ?


If  \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, 0 < x < \frac{1}{2}, \text{ find } \frac{dy}{dx} .\] ?


Find  \[\frac{dy}{dx}\] in the following case \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] ?


If \[x y^2 = 1,\] prove that \[2\frac{dy}{dx} + y^3 = 0\] ?


If \[\log \sqrt{x^2 + y^2} = \tan^{- 1} \left( \frac{y}{x} \right)\] Prove that \[\frac{dy}{dx} = \frac{x + y}{x - y}\] ?


If \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?


If \[\sqrt{y + x} + \sqrt{y - x} = c, \text {show that } \frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\] ?


Differentiate \[\left( \cos x \right)^x + \left( \sin x \right)^{1/x}\] ?


Find \[\frac{dy}{dx}\]

\[y = x^x + x^{1/x}\] ?


If \[y = \sin \left( x^x \right)\] prove that  \[\frac{dy}{dx} = \cos \left( x^x \right) \cdot x^x \left( 1 + \log x \right)\] ?


\[\text{ If }y = x^{\tan x} + \sqrt{\frac{x^2 + 1}{2}}, \text{ find} \frac{dy}{dx}\] ?

 


Find \[\frac{dy}{dx}\], when \[x = a \left( \cos \theta + \theta \sin \theta \right) \text{ and }y = a \left( \sin \theta - \theta \cos \theta \right)\] ?


Find \[\frac{dy}{dx}\] , when  \[x = \cos^{- 1} \frac{1}{\sqrt{1 + t^2}} \text{ and y } = \sin^{- 1} \frac{t}{\sqrt{1 + t^2}}, t \in R\] ?


If \[x = a \left( \frac{1 + t^2}{1 - t^2} \right) \text { and y } = \frac{2t}{1 - t^2}, \text { find } \frac{dy}{dx}\] ?


Differentiate (log x)x with respect to log x ?


Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to  \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( \frac{1}{\sqrt{2}}, 1 \right)\] ?


\[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cot^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right),\text { if }0 < x < 1\] ? 


Differentiate \[\tan^{- 1} \left( \frac{1 - x}{1 + x} \right)\] with respect to \[\sqrt{1 - x^2},\text {if} - 1 < x < 1\] ?


If \[f\left( 1 \right) = 4, f'\left( 1 \right) = 2\] find the value of the derivative of  \[\log \left( f\left( e^x \right) \right)\] w.r. to x at the point x = 0 ?

 


If \[f'\left( x \right) = \sqrt{2 x^2 - 1} \text { and y } = f \left( x^2 \right)\] then find \[\frac{dy}{dx} \text { at } x = 1\] ?


If \[y = \sin^{- 1} x + \cos^{- 1} x\] ,find \[\frac{dy}{dx}\] ?


If \[x = a \left( \theta + \sin \theta \right), y = a \left( 1 + \cos \theta \right), \text{ find} \frac{dy}{dx}\] ?


If \[y = \log \left| 3x \right|, x \neq 0, \text{ find } \frac{dy}{dx} \] ? 


If \[y = \left( 1 + \frac{1}{x} \right)^x , \text{ then} \frac{dy}{dx} =\] ____________ .


If \[3 \sin \left( xy \right) + 4 \cos \left( xy \right) = 5, \text { then } \frac{dy}{dx} =\] _____________ .


The derivative of \[\cos^{- 1} \left( 2 x^2 - 1 \right)\] with respect to  \[\cos^{- 1} x\]  is ___________ .


If x = a (θ + sin θ), y = a (1 + cos θ), prove that \[\frac{d^2 y}{d x^2} = - \frac{a}{y^2}\] ?


\[\text { If x } = \cos t + \log \tan\frac{t}{2}, y = \sin t, \text { then find the value of } \frac{d^2 y}{d t^2} \text { and } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?


\[ \text { If x } = a \sin t \text { and y } = a\left( \cos t + \log \tan\frac{t}{2} \right), \text { find } \frac{d^2 y}{d x^2} \] ?


\[\text { If x } = a\left( \cos2t + 2t \sin2t \right)\text {  and y } = a\left( \sin2t - 2t \cos2t \right), \text { then find } \frac{d^2 y}{d x^2} \] ?


If x = a cos nt − b sin nt and \[\frac{d^2 x}{dt} = \lambda x\]  then find the value of λ ?


If y = sin (m sin−1 x), then (1 − x2) y2 − xy1 is equal to


If y = (sin−1 x)2, then (1 − x2)y2 is equal to

 


If x = f(t) cos t − f' (t) sin t and y = f(t) sin t + f'(t) cos t, then\[\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2 =\]

 


If y = xn−1 log x then x2 y2 + (3 − 2n) xy1 is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×