हिंदी

If Y = ( 1 + 1 X ) X , Then D Y D X = (A) ( 1 + 1 X ) X ( 1 + 1 X ) − 1 X + 1 - Mathematics

Advertisements
Advertisements

प्रश्न

If \[y = \left( 1 + \frac{1}{x} \right)^x , \text{ then} \frac{dy}{dx} =\] ____________ .

विकल्प

  • \[\left( 1 + \frac{1}{x} \right)^x \left( 1 + \frac{1}{x} \right) - \frac{1}{x + 1}\]

  • \[\left( 1 + \frac{1}{x} \right)^x \log \left( 1 + \frac{1}{x} \right)\]

  • \[\left( x + \frac{1}{x} \right)^x \left\{ \log \left( x + 1 \right) - \frac{x}{x + 1} \right\}\]

  • \[\left( x + \frac{1}{x} \right)^x \left\{ \log \left( 1 + \frac{1}{x} \right) + \frac{1}{x + 1} \right\}\]

MCQ

उत्तर

\[\left( 1 + \frac{1}{x} \right)^x \left( 1 + \frac{1}{x} \right) - \frac{1}{x + 1}\]

 

\[\text{Let y }= \left( 1 + \frac{1}{x} \right)^x \]
\[\text{ Taking log on both sides}, \]
\[\log y = x \log\left( 1 + \frac{1}{x} \right)\]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = x\frac{d}{dx}\log\left( 1 + \frac{1}{x} \right) + \log\left( 1 + \frac{1}{x} \right)\frac{d}{dx}\left( x \right) \]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = x\left( \frac{1}{1 + \frac{1}{x}} \right)\frac{d}{dx}\left( 1 + \frac{1}{x} \right) + \log\left( 1 + \frac{1}{x} \right)\]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = x \times \frac{x}{x + 1}\left( - \frac{1}{x^2} \right) + \log\left( 1 + \frac{1}{x} \right)\]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = \frac{x^2}{x + 1} \times \frac{- 1}{x^2} + \log\left( 1 + \frac{1}{x} \right)\]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = \frac{- 1}{x + 1} + \log\left( 1 + \frac{1}{x} \right)\]
\[ \Rightarrow \frac{dy}{dx} = y\left[ \frac{- 1}{x + 1} + \log\left( 1 + \frac{1}{x} \right) \right]\]
\[ \Rightarrow \frac{dy}{dx} = \left( 1 + \frac{1}{x} \right)^x \left[ \log\left( 1 + \frac{1}{x} \right) - \frac{1}{x + 1} \right]\]

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Differentiation - Exercise 11.10 [पृष्ठ ११९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 11 Differentiation
Exercise 11.10 | Q 6 | पृष्ठ ११९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Differentiate the following functions from first principles x2ex ?


Differentiate \[e^{\sin} \sqrt{x}\] ?


Differentiate \[\log \left( x + \sqrt{x^2 + 1} \right)\] ?


Differentiate \[e^{\sin^{- 1} 2x}\] ?


Differentiate \[\sin \left( 2 \sin^{- 1} x \right)\] ?


Differentiate  \[e^x \log \sin 2x\] ?


Differentiate \[\frac{x^2 + 2}{\sqrt{\cos x}}\] ?


If \[y = \log \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]prove that \[\frac{dy}{dx} = \frac{x - 1}{2x \left( x + 1 \right)}\] ?

 


Differentiate \[\cos^{- 1} \left\{ \sqrt{\frac{1 + x}{2}} \right\}, - 1 < x < 1\] ?


Differentiate \[\sin^{- 1} \left( 1 - 2 x^2 \right), 0 < x < 1\] ?


Differentiate \[\tan^{- 1} \left\{ \frac{x}{a + \sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?


Differentiate \[\tan^{- 1} \left( \frac{\sin x}{1 + \cos x} \right), - \pi < x < \pi\] ?


Differentiate \[\tan^{- 1} \left( \frac{a + bx}{b - ax} \right)\] ?


Find  \[\frac{dy}{dx}\] in the following case  \[x^{2/3} + y^{2/3} = a^{2/3}\] ?

 


If \[\sqrt{1 - x^2} + \sqrt{1 - y^2} = a \left( x - y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sqrt{1 - y^2}}{1 - x^2}\] ?


If \[y \sqrt{1 - x^2} + x \sqrt{1 - y^2} = 1\] ,prove that \[\frac{dy}{dx} = - \sqrt{\frac{1 - y^2}{1 - x^2}}\] ?


If \[\cos y = x \cos \left( a + y \right), \text{ with } \cos a \neq \pm 1, \text{ prove that } \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\] ?


Differentiate \[x^{\cos^{- 1} x}\] ?


If \[\left( \sin x \right)^y = \left( \cos y \right)^x ,\], prove that \[\frac{dy}{dx} = \frac{\log \cos y - y cot x}{\log \sin x + x \tan y}\] ?


If \[y = x \sin \left( a + y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?

 


If  \[y = \sqrt{\log x + \sqrt{\log x + \sqrt{\log x + ... to \infty}}}\], prove that \[\left( 2 y - 1 \right) \frac{dy}{dx} = \frac{1}{x}\] ?

 


Find \[\frac{dy}{dx}\], when \[x = a t^2 \text{ and } y = 2\ at \] ?


Find \[\frac{dy}{dx}\], When \[x = a \left( \theta + \sin \theta \right) \text{ and } y = a \left( 1 - \cos \theta \right)\] ?


Find \[\frac{dy}{dx}\] , when \[x = \frac{3 at}{1 + t^2}, \text{ and } y = \frac{3 a t^2}{1 + t^2}\] ?


If  \[x = 2 \cos \theta - \cos 2 \theta \text{ and y} = 2 \sin \theta - \sin 2 \theta\], prove that \[\frac{dy}{dx} = \tan \left( \frac{3 \theta}{2} \right)\] ?


If \[x = a \left( \frac{1 + t^2}{1 - t^2} \right) \text { and y } = \frac{2t}{1 - t^2}, \text { find } \frac{dy}{dx}\] ?


\[\sin x = \frac{2t}{1 + t^2}, \tan y = \frac{2t}{1 - t^2}, \text { find }  \frac{dy}{dx}\] ?

Differentiate \[\sin^{- 1} \left( 2 ax \sqrt{1 - a^2 x^2} \right)\] with respect to \[\sqrt{1 - a^2 x^2}, \text{ if }-\frac{1}{\sqrt{2}} < ax < \frac{1}{\sqrt{2}}\] ?


If \[y = \log \sqrt{\tan x}, \text{ write } \frac{dy}{dx} \] ?


If \[f\left( x \right) = \log \left\{ \frac{u \left( x \right)}{v \left( x \right)} \right\}, u \left( 1 \right) = v \left( 1 \right) \text{ and }u' \left( 1 \right) = v' \left( 1 \right) = 2\] , then find the value of `f' (1)` ?


If \[y = \log \left| 3x \right|, x \neq 0, \text{ find } \frac{dy}{dx} \] ? 


Find the second order derivatives of the following function x cos x ?


If y = 500 e7x + 600 e−7x, show that \[\frac{d^2 y}{d x^2} = 49y\] ?


\[ \text { If x } = a \sin t \text { and y } = a\left( \cos t + \log \tan\frac{t}{2} \right), \text { find } \frac{d^2 y}{d x^2} \] ?


\[\text { If y } = a \left\{ x + \sqrt{x^2 + 1} \right\}^n + b \left\{ x - \sqrt{x^2 + 1} \right\}^{- n} , \text { prove that }\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \]

Disclaimer: There is a misprint in the question,

\[\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0\] must be written instead of

\[\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \] ?


If y = x + ex, find \[\frac{d^2 x}{d y^2}\] ?


If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =


Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right) w . r . t . \sin^{- 1} \frac{2x}{1 + x^2},\]tan-11+x2-1x w.r.t. sin-12x1+x2, if x ∈ (–1, 1) .


f(x) = xx has a stationary point at ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×