Advertisements
Advertisements
प्रश्न
If \[y = x \sin \left( a + y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?
उत्तर
\[\text{ We have, y } = x \sin\left( a + y \right)\]
Differentiating with respect to x using chain rule,
\[\frac{dy}{dx} = x\frac{d}{dx}\sin\left( a + y \right) + \sin\left( a + y \right)\frac{d}{dx}\left( x \right) \]
\[ \Rightarrow \frac{dy}{dx} = x \cos\left( a + y \right)\frac{dy}{dx} + \sin\left( a + y \right)\]
\[ \Rightarrow \left\{ 1 - x \cos\left( a + y \right) \right\}\frac{dy}{dx} = \sin\left( a + y \right)\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\sin\left( a + y \right)}{1 - x \cos\left( a + y \right)}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\sin\left( a + y \right)}{1 - \frac{y}{\sin\left( a + y \right)}\cos\left( a + y \right)} .............\left[ \because \frac{y}{\sin\left( a + y \right)} = x \right]\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin\left( a + y \right) - y \cos\left( a + y \right)}\]
APPEARS IN
संबंधित प्रश्न
Differentiate the following functions from first principles ecos x.
Differentiate the following functions from first principles sin−1 (2x + 3) ?
Differentiate sin (3x + 5) ?
Differentiate \[e^\sqrt{\cot x}\] ?
Differentiate \[\frac{e^x \log x}{x^2}\] ?
Differentiate \[\log \left( \frac{x^2 + x + 1}{x^2 - x + 1} \right)\] ?
Differentiate \[\frac{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}}{\sqrt{x^2 + 1} - \sqrt{x^2 - 1}}\] ?
Differentiate \[\cos \left( \log x \right)^2\] ?
If \[y = \frac{e^x - e^{- x}}{e^x + e^{- x}}\] .prove that \[\frac{dy}{dx} = 1 - y^2\] ?
If \[y = \sqrt{x^2 + a^2}\] prove that \[y\frac{dy}{dx} - x = 0\] ?
If \[y = \sqrt{a^2 - x^2}\] prove that \[y\frac{dy}{dx} + x = 0\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x^{1/3} + a^{1/3}}{1 - \left( a x \right)^{1/3}} \right\}\] ?
If \[x y^2 = 1,\] prove that \[2\frac{dy}{dx} + y^3 = 0\] ?
If \[y \sqrt{x^2 + 1} = \log \left( \sqrt{x^2 + 1} - x \right)\] ,Show that \[\left( x^2 + 1 \right) \frac{dy}{dx} + xy + 1 = 0\] ?
Differentiate \[x^{\sin x}\] ?
Differentiate \[x^{\cos^{- 1} x}\] ?
Differentiate \[x^{x \cos x +} \frac{x^2 + 1}{x^2 - 1}\] ?
If \[x^x + y^x = 1\], prove that \[\frac{dy}{dx} = - \left\{ \frac{x^x \left( 1 + \log x \right) + y^x \cdot \log y}{x \cdot y^\left( x - 1 \right)} \right\}\] ?
If \[\left( \cos x \right)^y = \left( \tan y \right)^x\] , prove that \[\frac{dy}{dx} = \frac{\log \tan y + y \tan x}{ \log \cos x - x \sec y \ cosec\ y }\] ?
If \[y = \left( \sin x - \cos x \right)^{\sin x - \cos x} , \frac{\pi}{4} < x < \frac{3\pi}{4}, \text{ find} \frac{dy}{dx}\] ?
If \[\left( \cos x \right)^y = \left( \cos y \right)^x , \text{ find } \frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\], when \[x = a t^2 \text{ and } y = 2\ at \] ?
Find \[\frac{dy}{dx}\], when \[x = a \left( \cos \theta + \theta \sin \theta \right) \text{ and }y = a \left( \sin \theta - \theta \cos \theta \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right)\] with respect to \[\sec^{- 1} x\] ?
If \[\left| x \right| < 1 \text{ and y} = 1 + x + x^2 + . . \] to ∞, then find the value of \[\frac{dy}{dx}\] ?
The differential coefficient of f (log x) w.r.t. x, where f (x) = log x is ___________ .
The derivative of \[\cos^{- 1} \left( 2 x^2 - 1 \right)\] with respect to \[\cos^{- 1} x\] is ___________ .
Find the second order derivatives of the following function tan−1 x ?
If y = x + tan x, show that \[\cos^2 x\frac{d^2 y}{d x^2} - 2y + 2x = 0\] ?
If x = a(1 − cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = - \frac{1}{a}\text { at } \theta = \frac{\pi}{2}\] ?
If x = 2at, y = at2, where a is a constant, then find \[\frac{d^2 y}{d x^2} \text { at }x = \frac{1}{2}\] ?
If f(x) = (cos x + i sin x) (cos 2x + i sin 2x) (cos 3x + i sin 3x) ...... (cos nx + i sin nx) and f(1) = 1, then f'' (1) is equal to
If y = sin (m sin−1 x), then (1 − x2) y2 − xy1 is equal to
If y = (sin−1 x)2, then (1 − x2)y2 is equal to
\[\text { If } y = \left( x + \sqrt{1 + x^2} \right)^n , \text { then show that }\]
\[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = n^2 y .\]
Differentiate `log [x+2+sqrt(x^2+4x+1)]`