Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ We have, x } = \sin^{- 1} \left( \frac{2t}{1 + t^2} \right)\]
\[\text {Put t } = \tan\theta\]
\[ \Rightarrow - 1 < \tan\theta < 1\]
\[ \Rightarrow - \frac{\pi}{4} < \theta < \frac{\pi}{4}\]
\[ \Rightarrow - \frac{\pi}{2} < 2\theta < \frac{\pi}{2}\]
\[ \therefore x = \sin^{- 1} \left( \frac{2 \tan\theta}{1 + \tan^2 \theta} \right)\]\[ \Rightarrow x = \sin^{- 1} \left( \sin2\theta \right)\]
\[ \Rightarrow x = 2\theta .......\left[ \because - \frac{\pi}{2} < 2\theta < \frac{\pi}{2} \right]\]
\[ \Rightarrow x = 2\left( \tan^{- 1} t \right) .........\left[ \because t = \sin\theta \right]\]
\[\Rightarrow \frac{dx}{dt} = \frac{2}{1 + t^2} . . . \left( i \right)\]
\[\text { Now, y } = \tan^{- 1} \left( \frac{2t}{1 - t^2} \right)\]
\[\text { put t } = \tan\theta\]
\[ \Rightarrow y = \tan^{- 1} \left( \frac{2 \tan\theta}{1 - \tan^2 \theta} \right)\]
\[ \Rightarrow y = \tan^{- 1} \left( \tan 2\theta \right) \]
\[ \Rightarrow y = 2\theta .......\left[ \because - \frac{\pi}{2} < 2\theta < \frac{\pi}{2} \right]\]
\[ \Rightarrow y = 2 \tan^{- 1} t .....\left[ \because t = \tan\theta \right]\]
\[\Rightarrow \frac{dy}{dt} = \frac{2}{1 + t^2} . . . \left( ii \right)\]
\[\text { Dividing equation } \left( ii \right) \text { by } \left( i \right), \]
\[\frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{2}{1 + t^2} \times \frac{1 + t^2}{2}\]
\[ \Rightarrow \frac{dy}{dx} = 1\]
APPEARS IN
संबंधित प्रश्न
Differentiate tan2 x ?
Differentiate \[3^{x \log x}\] ?
Differentiate (log sin x)2 ?
Differentiate \[\log \left( x + \sqrt{x^2 + 1} \right)\] ?
If \[y = \frac{x}{x + 2}\] , prove tha \[x\frac{dy}{dx} = \left( 1 - y \right) y\] ?
If \[y = \log \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]prove that \[\frac{dy}{dx} = \frac{x - 1}{2x \left( x + 1 \right)}\] ?
Differentiate \[\cos^{- 1} \left\{ 2x\sqrt{1 - x^2} \right\}, \frac{1}{\sqrt{2}} < x < 1\] ?
Differentiate \[\sin^{- 1} \left\{ \sqrt{\frac{1 - x}{2}} \right\}, 0 < x < 1\] ?
Differentiate \[\sin^{- 1} \left\{ \sqrt{1 - x^2} \right\}, 0 < x < 1\] ?
Differentiate \[\cos^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?
Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{x}{1 + 6 x^2} \right)\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x^{1/3} + a^{1/3}}{1 - \left( a x \right)^{1/3}} \right\}\] ?
Find \[\frac{dy}{dx}\] in the following case \[\left( x + y \right)^2 = 2axy\] ?
If \[y = x \sin y\] , Prove that \[\frac{dy}{dx} = \frac{\sin y}{\left( 1 - x \cos y \right)}\] ?
Differentiate \[x^{1/x}\] with respect to x.
Differentiate \[e^{\sin x }+ \left( \tan x \right)^x\] ?
Find \[\frac{dy}{dx}\] \[y = x^{\sin x} + \left( \sin x \right)^x\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\cot x} + \left( \cot x \right)^{\tan x}\] ?
If \[x^x + y^x = 1\], prove that \[\frac{dy}{dx} = - \left\{ \frac{x^x \left( 1 + \log x \right) + y^x \cdot \log y}{x \cdot y^\left( x - 1 \right)} \right\}\] ?
If \[y = \sqrt{\cos x + \sqrt{\cos x + \sqrt{\cos x + . . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sin x}{1 - 2 y}\] ?
If \[\frac{dy}{dx}\] when \[x = a \cos \theta \text{ and } y = b \sin \theta\] ?
Find \[\frac{dy}{dx}\] ,when \[x = \frac{e^t + e^{- t}}{2} \text{ and } y = \frac{e^t - e^{- t}}{2}\] ?
Find \[\frac{dy}{dx}\] ,When \[x = e^\theta \left( \theta + \frac{1}{\theta} \right) \text{ and } y = e^{- \theta} \left( \theta - \frac{1}{\theta} \right)\] ?
If \[x = 2 \cos \theta - \cos 2 \theta \text{ and y} = 2 \sin \theta - \sin 2 \theta\], prove that \[\frac{dy}{dx} = \tan \left( \frac{3 \theta}{2} \right)\] ?
If \[x = \cos t \text{ and y } = \sin t,\] prove that \[\frac{dy}{dx} = \frac{1}{\sqrt{3}} \text { at } t = \frac{2 \pi}{3}\] ?
Differentiate log (1 + x2) with respect to tan−1 x ?
Differentiate \[\sin^{- 1} \left( 2 ax \sqrt{1 - a^2 x^2} \right)\] with respect to \[\sqrt{1 - a^2 x^2}, \text{ if }-\frac{1}{\sqrt{2}} < ax < \frac{1}{\sqrt{2}}\] ?
If \[u = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ and v} = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\] where \[- 1 < x < 1\], then write the value of \[\frac{du}{dv}\] ?
If f (x) is an odd function, then write whether `f' (x)` is even or odd ?
Find the second order derivatives of the following function log (sin x) ?
If x = a (θ + sin θ), y = a (1 + cos θ), prove that \[\frac{d^2 y}{d x^2} = - \frac{a}{y^2}\] ?
If f(x) = (cos x + i sin x) (cos 2x + i sin 2x) (cos 3x + i sin 3x) ...... (cos nx + i sin nx) and f(1) = 1, then f'' (1) is equal to