Advertisements
Advertisements
प्रश्न
If \[x = 2 \cos \theta - \cos 2 \theta \text{ and y} = 2 \sin \theta - \sin 2 \theta\], prove that \[\frac{dy}{dx} = \tan \left( \frac{3 \theta}{2} \right)\] ?
उत्तर
\[\Rightarrow \frac{dx}{d\theta} = 2\left( - \sin\theta \right) - \left( - \sin2\theta \right)\frac{d}{d\theta}\left( 2\theta \right)\]
\[ \Rightarrow \frac{dx}{d\theta} = - 2\sin\theta + 2 \sin2\theta\]
\[ \Rightarrow \frac{dx}{d\theta} = 2\left( \sin2\theta - \sin\theta \right) . . . \left( i \right)\]
\[\text{ and }, \]
\[y = 2 \sin\theta - \sin2\theta\]
\[\Rightarrow \frac{dy}{d\theta} = 2 \cos\theta - \cos2\theta\frac{d}{d\theta}\left( 2\theta \right)\]
\[ \Rightarrow \frac{dy}{d\theta} = 2 \cos\theta - \cos2\theta\left( 2 \right)\]
\[ \Rightarrow \frac{dy}{d\theta} = 2 \cos\theta - 2 \cos2\theta\]
\[ \Rightarrow \frac{dy}{d\theta} = 2\left( \cos\theta - \cos2\theta \right) . . . \left( ii \right)\]
\[\text{ Dividing equation } \left( ii \right) \text{ by equation } \left( i \right), \]
\[\frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{2\left( \cos\theta - \cos2\theta \right)}{2\left( \sin2\theta - \sin\theta \right)}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\cos\theta - \cos2\theta}{\sin2\theta - \sin\theta}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- 2\sin\left( \frac{\theta + 2\theta}{2} \right)\sin\left( \frac{\theta - 2\theta}{2} \right)}{2\cos\left( \frac{2\theta + \theta}{2} \right)\sin\left( \frac{2\theta - \theta}{2} \right)} ............[\because \sin A - \sin B = 2 \cos\left( \frac{A + B}{2} \right)\sin\left( \frac{A - B}{2} \right)\text{ and } \cos A - \cos B = - 2\sin\left( \frac{A + B}{2} \right)\sin\left( \frac{A - B}{2} \right)]\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- \sin\left( \frac{3\theta}{2} \right)\sin\left( \frac{- \theta}{2} \right)}{\cos\left( \frac{3\theta}{2} \right)\sin\left( \frac{\theta}{2} \right)}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- \sin\left( \frac{3\theta}{2} \right)\left( - \sin\frac{\theta}{2} \right)}{\cos\left( \frac{3\theta}{2} \right)\sin\left( \frac{\theta}{2} \right)}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\sin\left( \frac{3\theta}{2} \right)}{\cos\left( \frac{3\theta}{2} \right)}\]
\[ \Rightarrow \frac{dy}{dx} = \tan\left( \frac{3\theta}{2} \right)\]
APPEARS IN
संबंधित प्रश्न
Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is `cos^(-1)(1/sqrt3)`
Differentiate \[\log \sqrt{\frac{1 - \cos x}{1 + \cos x}}\] ?
Differentiate \[e^{\sin^{- 1} 2x}\] ?
Differentiate \[\sin \left( 2 \sin^{- 1} x \right)\] ?
Differentiate \[\log \left( \tan^{- 1} x \right)\]?
Differentiate \[\log \left( 3x + 2 \right) - x^2 \log \left( 2x - 1 \right)\] ?
Differentiate \[\sin^2 \left\{ \log \left( 2x + 3 \right) \right\}\] ?
Differentiate \[\sin^{- 1} \left( \frac{x}{\sqrt{x^2 + a^2}} \right)\] ?
Differentiate \[3 e^{- 3x} \log \left( 1 + x \right)\] ?
If \[y = \frac{e^x - e^{- x}}{e^x + e^{- x}}\] .prove that \[\frac{dy}{dx} = 1 - y^2\] ?
If \[y = \sqrt{x^2 + a^2}\] prove that \[y\frac{dy}{dx} - x = 0\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{a + \sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x^{1/3} + a^{1/3}}{1 - \left( a x \right)^{1/3}} \right\}\] ?
If \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), 0 < x < 1,\] prove that \[\frac{dy}{dx} = \frac{4}{1 + x^2}\] ?
If \[y = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), x > 0\] ,prove that \[\frac{dy}{dx} = \frac{4}{1 + x^2} \] ?
If \[y = \cos^{- 1} \left\{ \frac{2x - 3 \sqrt{1 - x^2}}{\sqrt{13}} \right\}, \text{ find } \frac{dy}{dx}\] ?
Differentiate \[\left( \log x \right)^{ \log x }\] ?
Differentiate \[x^{\sin^{- 1} x}\] ?
Find \[\frac{dy}{dx}\] \[y = x^{\cos x} + \left( \sin x \right)^{\tan x}\] ?
If \[y^x = e^{y - x}\] ,prove that \[\frac{dy}{dx} = \frac{\left( 1 + \log y \right)^2}{\log y}\] ?
Find \[\frac{dy}{dx}\],when \[x = a e^\theta \left( \sin \theta - \cos \theta \right), y = a e^\theta \left( \sin \theta + \cos \theta \right)\] ?
Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { if } 0 < x < 1\] ?
If \[f\left( x \right) = \log \left\{ \frac{u \left( x \right)}{v \left( x \right)} \right\}, u \left( 1 \right) = v \left( 1 \right) \text{ and }u' \left( 1 \right) = v' \left( 1 \right) = 2\] , then find the value of `f' (1)` ?
If \[f\left( x \right) = \tan^{- 1} \sqrt{\frac{1 + \sin x}{1 - \sin x}}, 0 \leq x \leq \pi/2, \text{ then } f' \left( \pi/6 \right) \text{ is }\] _________ .
If \[x^y = e^{x - y} ,\text{ then } \frac{dy}{dx}\] is __________ .
Let \[\cup = \sin^{- 1} \left( \frac{2 x}{1 + x^2} \right) \text { and }V = \tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text { then } \frac{d \cup}{dV} =\] ____________ .
If \[f\left( x \right) = \left| x - 3 \right| \text { and }g\left( x \right) = fof \left( x \right)\] is equal to __________ .
If \[y = \frac{1}{1 + x^{a - b} +^{c - b}} + \frac{1}{1 + x^{b - c} + x^{a - c}} + \frac{1}{1 + x^{b - a} + x^{c - a}}\] then \[\frac{dy}{dx}\] is equal to ______________ .
Find the second order derivatives of the following function x cos x ?
If y = x + tan x, show that \[\cos^2 x\frac{d^2 y}{d x^2} - 2y + 2x = 0\] ?
If x = a(1 − cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = - \frac{1}{a}\text { at } \theta = \frac{\pi}{2}\] ?
If y = 500 e7x + 600 e−7x, show that \[\frac{d^2 y}{d x^2} = 49y\] ?
If x = 4z2 + 5, y = 6z2 + 7z + 3, find \[\frac{d^2 y}{d x^2}\] ?
If y = (cot−1 x)2, prove that y2(x2 + 1)2 + 2x (x2 + 1) y1 = 2 ?
If \[x = 3 \cos t - 2 \cos^3 t, y = 3\sin t - 2 \sin^3 t,\] find \[\frac{d^2 y}{d x^2} \] ?
If y = axn+1 + bx−n, then \[x^2 \frac{d^2 y}{d x^2} =\]
If f(x) = (cos x + i sin x) (cos 2x + i sin 2x) (cos 3x + i sin 3x) ...... (cos nx + i sin nx) and f(1) = 1, then f'' (1) is equal to
If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =
If \[\frac{d}{dx}\left[ x^n - a_1 x^{n - 1} + a_2 x^{n - 2} + . . . + \left( - 1 \right)^n a_n \right] e^x = x^n e^x\] then the value of ar, 0 < r ≤ n, is equal to