Advertisements
Advertisements
प्रश्न
If y = (cot−1 x)2, prove that y2(x2 + 1)2 + 2x (x2 + 1) y1 = 2 ?
उत्तर
Here,
\[y = \left( \cot^{- 1} x \right)^2 \]
\[\text { Differentiating w . r . t . x, we get }\]
\[ y_1 = 2co t^{- 1} x \times \frac{- 1}{1 + x^2} = \frac{- 2co t^{- 1} x}{1 + x^2}\]
\[\text { Differentiating again w . r . t . x, we get }\]
\[ y_2 = \frac{2 + 4x \cot^{- 1} x}{\left( 1 + x^2 \right)^2}\]
\[ \Rightarrow y_2 = \frac{2}{\left( 1 + x^2 \right)^2} + \frac{2x \times 2 \cot^{- 1} x}{\left( 1 + x^2 \right)\left( 1 + x^2 \right)}\]
\[ \Rightarrow y_2 = \frac{2}{\left( 1 + x^2 \right)^2} - \frac{2x y_1}{\left( 1 + x^2 \right)}\]
\[ \Rightarrow \left( 1 + x^2 \right)^2 y_2 = 2 - 2x y_1 \left( 1 + x^2 \right)\]
\[ \Rightarrow \left( 1 + x^2 \right)^2 y_2 + 2x y_1 \left( 1 + x^2 \right) = 2\]
Hence proved.
APPEARS IN
संबंधित प्रश्न
Differentiate the following functions from first principles e−x.
Differentiate sin (3x + 5) ?
Differentiate logx 3 ?
Differentiate \[\sin \left( \frac{1 + x^2}{1 - x^2} \right)\] ?
Differentiate \[e^{3 x} \cos 2x\] ?
Differentiate \[e^{\sin^{- 1} 2x}\] ?
Differentiate \[\sin^2 \left\{ \log \left( 2x + 3 \right) \right\}\] ?
\[\log\left\{ \cot\left( \frac{\pi}{4} + \frac{x}{2} \right) \right\}\] ?
If \[y = \log \left\{ \sqrt{x - 1} - \sqrt{x + 1} \right\}\] ,show that \[\frac{dy}{dx} = \frac{- 1}{2\sqrt{x^2 - 1}}\] ?
Differentiate \[\sin^{- 1} \left\{ \sqrt{1 - x^2} \right\}, 0 < x < 1\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{1 + \sqrt{1 - x^2}} \right\}, - 1 < x < 1\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{\sqrt{1 + x} + \sqrt{1 - x}}{2} \right\}, 0 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + x}{1 - ax} \right)\] ?
Find \[\frac{dy}{dx}\] in the following case \[x^5 + y^5 = 5 xy\] ?
Find \[\frac{dy}{dx}\] in the following case \[\sin xy + \cos \left( x + y \right) = 1\] ?
If \[\cos y = x \cos \left( a + y \right), \text{ with } \cos a \neq \pm 1, \text{ prove that } \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\] ?
Differentiate \[\sin \left( x^x \right)\] ?
If `y=(sinx)^x + sin^-1 sqrtx "then find" dy/dx`
Find \[\frac{dy}{dx}\] \[y = x^{\cos x} + \left( \sin x \right)^{\tan x}\] ?
Differentiate x2 with respect to x3
Differentiate \[\tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text { if }0 < x < 1\] ?
If \[y = x \left| x \right|\] , find \[\frac{dy}{dx} \text{ for } x < 0\] ?
If \[y = \sin^{- 1} x + \cos^{- 1} x\] ,find \[\frac{dy}{dx}\] ?
If \[y = \sec^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right)\] then write the value of \[\frac{dy}{dx} \] ?
If \[\left| x \right| < 1 \text{ and y} = 1 + x + x^2 + . . \] to ∞, then find the value of \[\frac{dy}{dx}\] ?
If \[u = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ and v} = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\] where \[- 1 < x < 1\], then write the value of \[\frac{du}{dv}\] ?
If \[f\left( x \right) = \log \left\{ \frac{u \left( x \right)}{v \left( x \right)} \right\}, u \left( 1 \right) = v \left( 1 \right) \text{ and }u' \left( 1 \right) = v' \left( 1 \right) = 2\] , then find the value of `f' (1)` ?
If f (x) is an even function, then write whether `f' (x)` is even or odd ?
The differential coefficient of f (log x) w.r.t. x, where f (x) = log x is ___________ .
If \[f\left( x \right) = \left| x - 3 \right| \text { and }g\left( x \right) = fof \left( x \right)\] is equal to __________ .
If y = x3 log x, prove that \[\frac{d^4 y}{d x^4} = \frac{6}{x}\] ?
If log y = tan−1 x, show that (1 + x2)y2 + (2x − 1) y1 = 0 ?
If y = (tan−1 x)2, then prove that (1 + x2)2 y2 + 2x(1 + x2)y1 = 2 ?
If y = cos−1 x, find \[\frac{d^2 y}{d x^2}\] in terms of y alone ?
If y = 500 e7x + 600 e−7x, show that \[\frac{d^2 y}{d x^2} = 49y\] ?
If \[x = 3 \cos t - 2 \cos^3 t, y = 3\sin t - 2 \sin^3 t,\] find \[\frac{d^2 y}{d x^2} \] ?
If y = etan x, then (cos2 x)y2 =