मराठी

If Y = (Cot−1 X)2, Prove that Y2(X2 + 1)2 + 2x (X2 + 1) Y1 = 2 ? - Mathematics

Advertisements
Advertisements

प्रश्न

If y = (cot−1 x)2, prove that y2(x2 + 1)2 + 2x (x2 + 1) y1 = 2 ?

उत्तर

Here,

\[y = \left( \cot^{- 1} x \right)^2 \]

\[\text { Differentiating w . r . t . x, we get }\]

\[ y_1 = 2co t^{- 1} x \times \frac{- 1}{1 + x^2} = \frac{- 2co t^{- 1} x}{1 + x^2}\]

\[\text { Differentiating again w . r . t . x, we get }\]

\[ y_2 = \frac{2 + 4x \cot^{- 1} x}{\left( 1 + x^2 \right)^2}\]

\[ \Rightarrow y_2 = \frac{2}{\left( 1 + x^2 \right)^2} + \frac{2x \times 2 \cot^{- 1} x}{\left( 1 + x^2 \right)\left( 1 + x^2 \right)}\]

\[ \Rightarrow y_2 = \frac{2}{\left( 1 + x^2 \right)^2} - \frac{2x y_1}{\left( 1 + x^2 \right)}\]

\[ \Rightarrow \left( 1 + x^2 \right)^2 y_2 = 2 - 2x y_1 \left( 1 + x^2 \right)\]

\[ \Rightarrow \left( 1 + x^2 \right)^2 y_2 + 2x y_1 \left( 1 + x^2 \right) = 2\]

Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 12: Higher Order Derivatives - Exercise 12.1 [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 12 Higher Order Derivatives
Exercise 12.1 | Q 41 | पृष्ठ १८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Differentiate the following functions from first principles e3x.


Differentiate the following functions from first principles ecos x.


Differentiate the following functions from first principles x2ex ?


Differentiate tan (x° + 45°) ?


Differentiate \[3^{x \log x}\] ?


Differentiate \[\sin \left( \frac{1 + x^2}{1 - x^2} \right)\] ?


Differentiate \[\log \left( \tan^{- 1} x \right)\]? 


Differentiate  \[\tan^{- 1} \left( \frac{\sqrt{x} + \sqrt{a}}{1 - \sqrt{xa}} \right)\] ?


Differentiate \[\tan^{- 1} \left( \frac{a + b \tan x}{b - a \tan x} \right)\] ?


Find  \[\frac{dy}{dx}\] in the following case \[\left( x + y \right)^2 = 2axy\] ?

 


If \[x \sqrt{1 + y} + y \sqrt{1 + x} = 0\] , prove that \[\left( 1 + x \right)^2 \frac{dy}{dx} + 1 = 0\]  ?


Differentiate \[x^{\tan^{- 1} x }\]  ?


If \[x^y \cdot y^x = 1\] , prove that \[\frac{dy}{dx} = - \frac{y \left( y + x \log y \right)}{x \left( y \log x + x \right)}\] ?


If \[x^m y^n = 1\] , prove that \[\frac{dy}{dx} = - \frac{my}{nx}\] ?


If \[y = x \sin y\] , prove that  \[\frac{dy}{dx} = \frac{y}{x \left( 1 - x \cos y \right)}\] ?

 


If \[y = \left( \cos x \right)^{\left( \cos x \right)^{\left( \cos x \right) . . . \infty}}\],prove that \[\frac{dy}{dx} = - \frac{y^2 \tan x}{\left( 1 - y \log \cos x \right)}\]?

 


If  \[x = a\left( t + \frac{1}{t} \right) \text{ and y } = a\left( t - \frac{1}{t} \right)\] ,prove that  \[\frac{dy}{dx} = \frac{x}{y}\]?

 


If \[x = \sin^{- 1} \left( \frac{2 t}{1 + t^2} \right) \text{ and y } = \tan^{- 1} \left( \frac{2 t}{1 - t^2} \right), - 1 < t < 1\] porve that \[\frac{dy}{dx} = 1\] ?

 


Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( \frac{1}{2 \sqrt{2}}, \frac{1}{2} \right)\] ?


Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right), \text { if }- \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?


Differentiate \[\tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text {  if }0 < x < 1\] ?


If \[f\left( x \right) = x + 1\] , then write the value of \[\frac{d}{dx} \left( fof \right) \left( x \right)\] ?


If \[\frac{\pi}{2} \leq x \leq \frac{3\pi}{2} \text { and y } = \sin^{- 1} \left( \sin x \right), \text { find } \frac{dy}{dx} \] ?


Find the second order derivatives of the following function ex sin 5x  ?


If y = x3 log x, prove that \[\frac{d^4 y}{d x^4} = \frac{6}{x}\] ?


If x = a (1 − cos3 θ), y = a sin3 θ, prove that \[\frac{d^2 y}{d x^2} = \frac{32}{27a} \text { at } \theta = \frac{\pi}{6}\] ?


If x = cos θ, y = sin3 θ, prove that \[y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 = 3 \sin^2 \theta\left( 5 \cos^2 \theta - 1 \right)\] ?


If \[y = e^{\tan^{- 1} x}\] prove that (1 + x2)y2 + (2x − 1)y1 = 0 ?


If \[y = \left[ \log \left( x + \sqrt{x^2 + 1} \right) \right]^2\] show that \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 2\] ?


If y = ae2x + be−x, show that, \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\] ?


\[\text { If x } = \cos t + \log \tan\frac{t}{2}, y = \sin t, \text { then find the value of } \frac{d^2 y}{d t^2} \text { and } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?


If x = 2aty = at2, where a is a constant, then find \[\frac{d^2 y}{d x^2} \text { at }x = \frac{1}{2}\] ?


If x = a cos nt − b sin nt, then \[\frac{d^2 x}{d t^2}\] is 

 


If y = a sin mx + b cos mx, then \[\frac{d^2 y}{d x^2}\]   is equal to

 


If \[y = \tan^{- 1} \left\{ \frac{\log_e \left( e/ x^2 \right)}{\log_e \left( e x^2 \right)} \right\} + \tan^{- 1} \left( \frac{3 + 2 \log_e x}{1 - 6 \log_e x} \right)\], then \[\frac{d^2 y}{d x^2} =\]

 


If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =


If y = sin (m sin−1 x), then (1 − x2) y2 − xy1 is equal to


If y = etan x, then (cos2 x)y2 =


Find the minimum value of (ax + by), where xy = c2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×