मराठी

Find the Minimum Value of (Ax + By), Where Xy = C2. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the minimum value of (ax + by), where xy = c2.

उत्तर

Let z = ax + by    .....(1)

Given:
xy = c2  or \[y = \frac{c^2}{x}\]

Putting 

\[y = \frac{c^2}{x}\] in (1), we get 

z = ax + \[\frac{b c^2}{x}\]

Differentiating both sides w.r.t. x, we get

\[\frac{dz}{dx} = a - \frac{b c^2}{x^2}\]

For maxima or minima,

\[\frac{dz}{dx} = 0\]

⇒ \[a - \frac{b c^2}{x^2} = 0\]

⇒ \[x^2 = \frac{b c^2}{a}\]

⇒ \[x = \pm c\sqrt{\frac{b}{a}}\]

Now,

\[\frac{d^2 z}{d x^2} = \frac{2b c^2}{x^3}\]

At \[x = c\sqrt{\frac{b}{a}}\] , \[\frac{d^2 z}{d x^2} = \frac{2b c^2}{\left( c\sqrt{\frac{b}{a}} \right)^3} > 0\]

\[\therefore x = c\sqrt{\frac{b}{a}}\] is the point of minima.
At \[x =  - c\sqrt{\frac{b}{a}}\], \[\frac{d^2 z}{d x^2} = \frac{2b c^2}{\left( - c\sqrt{\frac{b}{a}} \right)^3} < 0\]

\[\therefore x = - c\sqrt{\frac{b}{a}}\] is the point of maxima.

So,
When \[x = c\sqrt{\frac{b}{a}}\], \[y = \frac{c^2}{x} = \frac{c^2}{c\sqrt{\frac{b}{a}}} = c\sqrt{\frac{a}{b}}\]

\[\therefore z_{\text { minimum}} = ac\sqrt{\frac{b}{a}} + bc\sqrt{\frac{a}{b}} = \frac{abc + abc}{\sqrt{ab}} = \frac{2abc}{\sqrt{ab}} = 2c\sqrt{ab}\]

Thus, the minimum value of (ax + by), where xy = c2 is \[2c\sqrt{ab}\].

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2014-2015 (March) Foreign Set 2

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is `cos^(-1)(1/sqrt3)`


If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum, when the angle between them is 60º.


Differentiate \[\sqrt{\frac{1 + \sin x}{1 - \sin x}}\] ?


Differentiate \[\sqrt{\frac{1 + x}{1 - x}}\] ?


Differentiate \[e^{\sin^{- 1} 2x}\] ?


Differentiate  \[e^x \log \sin 2x\] ?


Differentiate \[e^{ax} \sec x \tan 2x\] ?


If \[y = \frac{e^x - e^{- x}}{e^x + e^{- x}}\] .prove that \[\frac{dy}{dx} = 1 - y^2\] ?


Differentiate \[\cos^{- 1} \left\{ \sqrt{\frac{1 + x}{2}} \right\}, - 1 < x < 1\] ?


Differentiate \[\sin^{- 1} \left( 2 x^2 - 1 \right), 0 < x < 1\]  ?


If  \[y = \cot^{- 1} \left\{ \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right\}\],  show that \[\frac{dy}{dx}\] is independent of x. ? 

 


If \[\sqrt{y + x} + \sqrt{y - x} = c, \text {show that } \frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\] ?


find  \[\frac{dy}{dx}\]  \[y = \frac{\left( x^2 - 1 \right)^3 \left( 2x - 1 \right)}{\sqrt{\left( x - 3 \right) \left( 4x - 1 \right)}}\] ?

 


If `y=(sinx)^x + sin^-1 sqrtx  "then find"  dy/dx` 


If \[\left( \sin x \right)^y = \left( \cos y \right)^x ,\], prove that \[\frac{dy}{dx} = \frac{\log \cos y - y cot x}{\log \sin x + x \tan y}\] ?


If \[e^y = y^x ,\] prove that\[\frac{dy}{dx} = \frac{\left( \log y \right)^2}{\log y - 1}\] ?


If  \[y = \sqrt{\log x + \sqrt{\log x + \sqrt{\log x + ... to \infty}}}\], prove that \[\left( 2 y - 1 \right) \frac{dy}{dx} = \frac{1}{x}\] ?

 


If \[x = \left( t + \frac{1}{t} \right)^a , y = a^{t + \frac{1}{t}} , \text{ find } \frac{dy}{dx}\] ?


The derivative of \[\sec^{- 1} \left( \frac{1}{2 x^2 + 1} \right) \text { w . r . t }. \sqrt{1 + 3 x} \text { at } x = - 1/3\]


\[\frac{d}{dx} \left[ \log \left\{ e^x \left( \frac{x - 2}{x + 2} \right)^{3/4} \right\} \right]\] equals ___________ .

If y = (sin−1 x)2, prove that (1 − x2)

\[\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?


If y = ae2x + be−x, show that, \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\] ?


If  \[y = e^{a \cos^{- 1}} x\] ,prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - a^2 y = 0\] ?


If y = sin (log x), prove that \[x^2 \frac{d^2 y}{d x^2} + x\frac{dy}{dx} + y = 0\] ?


If y = 3 e2x + 2 e3x, prove that  \[\frac{d^2 y}{d x^2} - 5\frac{dy}{dx} + 6y = 0\] ?


\[\text{ If x } = a\left( \cos t + \log \tan\frac{t}{2} \right) \text { and y } = a\left( \sin t \right), \text { evaluate } \frac{d^2 y}{d x^2} \text { at t } = \frac{\pi}{3} \] ?


If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =


If y = etan x, then (cos2 x)y2 =


If x = f(t) cos t − f' (t) sin t and y = f(t) sin t + f'(t) cos t, then\[\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2 =\]

 


If y = xx, prove that \[\frac{d^2 y}{d x^2} - \frac{1}{y} \left( \frac{dy}{dx} \right)^2 - \frac{y}{x} = 0 .\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×