Advertisements
Advertisements
प्रश्न
If x = f(t) cos t − f' (t) sin t and y = f(t) sin t + f'(t) cos t, then\[\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2 =\]
पर्याय
f(t) − f''(t)
{f(t) − f'' (t)}2
{f(t) + f''(t)}2
none of these
उत्तर
(c){f(t) + f''(t)}2
Here,
\[x = f\left( t \right)\cos t - f^{'} \left( t \right) \sin t \text { and y } = f\left( t \right) \sin t + f^{'} \left( t \right)\cos t\]
\[ \Rightarrow \frac{d x}{d t} = f^{'} \left( t \right)\cos t - f\left( t \right)\sin t - f^{''} \left( t \right)\sin t - f^{'} \left( t \right)\cos t \text { and } \frac{d y}{d t} = f^{'} \left( t \right) \sin t + f\left( t \right)\cos t + f^{''} \left( t \right)\cos t - f^{'} \left( t \right) \sin t\]
\[ \Rightarrow \frac{d x}{d t} = - f\left( t \right)\sin t - f^{''} \left( t \right)\sin t \text { and } \frac{d y}{d t} = f\left( t \right)\cos t + f^{''} \left( t \right)\cos t\]
\[\text { Thus }, \]
\[ \left( \frac{d x}{d t} \right)^2 + \left( \frac{d y}{d t} \right)^2 = \left\{ - f\left( t \right)\sin t - f^{''} \left( t \right)\sin t \right\}^2 + \left\{ f\left( t \right)\cos t + f^{''} \left( t \right)\cos t \right\}^2 \]
\[ = \left\{ f\left( t \right)\sin t + f^{''} \left( t \right)\sin t \right\}^2 + \left\{ f\left( t \right)\cos t + f^{''} \left( t \right)\cos t \right\}^2 \]
\[ = \sin^2 t \left\{ f\left( t \right) + f^{''} \left( t \right) \right\}^2 + \cos^2 t \left\{ f\left( t \right) + f^{''} \left( t \right) \right\}^2 \]
\[ = \left\{ f\left( t \right) + f^{''} \left( t \right) \right\}^2 \left( \sin^2 t + \cos^2 t \right)\]
\[ = \left\{ f\left( t \right) + f^{''} \left( t \right) \right\}^2\]
APPEARS IN
संबंधित प्रश्न
Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is `cos^(-1)(1/sqrt3)`
Differentiate sin (log x) ?
Differentiate \[\frac{e^{2x} + e^{- 2x}}{e^{2x} - e^{- 2x}}\] ?
Differentiate \[e^x \log \sin 2x\] ?
If \[y = e^x \cos x\] ,prove that \[\frac{dy}{dx} = \sqrt{2} e^x \cdot \cos \left( x + \frac{\pi}{4} \right)\] ?
Differentiate \[\cos^{- 1} \left\{ 2x\sqrt{1 - x^2} \right\}, \frac{1}{\sqrt{2}} < x < 1\] ?
Differentiate \[\sin^{- 1} \left( 2 x^2 - 1 \right), 0 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{2^{x + 1}}{1 - 4^x} \right), - \infty < x < 0\] ?
Differentiate \[\tan^{- 1} \left( \frac{x}{1 + 6 x^2} \right)\] ?
If \[y \sqrt{1 - x^2} + x \sqrt{1 - y^2} = 1\] ,prove that \[\frac{dy}{dx} = - \sqrt{\frac{1 - y^2}{1 - x^2}}\] ?
If \[x \sqrt{1 + y} + y \sqrt{1 + x} = 0\] , prove that \[\left( 1 + x \right)^2 \frac{dy}{dx} + 1 = 0\] ?
If \[\log \sqrt{x^2 + y^2} = \tan^{- 1} \left( \frac{y}{x} \right)\] Prove that \[\frac{dy}{dx} = \frac{x + y}{x - y}\] ?
If \[xy \log \left( x + y \right) = 1\] ,Prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?
Differentiate \[\left( 1 + \cos x \right)^x\] ?
If \[x^y \cdot y^x = 1\] , prove that \[\frac{dy}{dx} = - \frac{y \left( y + x \log y \right)}{x \left( y \log x + x \right)}\] ?
If \[y = \log\frac{x^2 + x + 1}{x^2 - x + 1} + \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{\sqrt{3} x}{1 - x^2} \right), \text{ find } \frac{dy}{dx} .\] ?
If \[\frac{dy}{dx}\] when \[x = a \cos \theta \text{ and } y = b \sin \theta\] ?
Differentiate \[\tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right)\] with respect to \[\sec^{- 1} x\] ?
Differentiate \[\tan^{- 1} \left( \frac{1 - x}{1 + x} \right)\] with respect to \[\sqrt{1 - x^2},\text {if} - 1 < x < 1\] ?
If \[y = \tan^{- 1} \left( \frac{1 - x}{1 + x} \right), \text{ find} \frac{dy}{dx}\] ?
If \[x = 3\sin t - \sin3t, y = 3\cos t - \cos3t \text{ find }\frac{dy}{dx} \text{ at } t = \frac{\pi}{3}\] ?
If f (x) = logx2 (log x), the `f' (x)` at x = e is ____________ .
\[\frac{d}{dx} \left\{ \tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right) \right\} \text { equals }\] ______________ .
If \[f\left( x \right) = \sqrt{x^2 - 10x + 25}\] then the derivative of f (x) in the interval [0, 7] is ____________ .
Find the second order derivatives of the following function e6x cos 3x ?
If y = e−x cos x, show that \[\frac{d^2 y}{d x^2} = 2 e^{- x} \sin x\] ?
If y = x3 log x, prove that \[\frac{d^4 y}{d x^4} = \frac{6}{x}\] ?
If x = a (θ − sin θ), y = a (1 + cos θ) prove that, find \[\frac{d^2 y}{d x^2}\] ?
If y = cosec−1 x, x >1, then show that \[x\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + \left( 2 x^2 - 1 \right)\frac{dy}{dx} = 0\] ?
\[\text { If x } = \cos t + \log \tan\frac{t}{2}, y = \sin t, \text { then find the value of } \frac{d^2 y}{d t^2} \text { and } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?
If x = t2 and y = t3, find \[\frac{d^2 y}{d x^2}\] ?
If y = |x − x2|, then find \[\frac{d^2 y}{d x^2}\] ?
If f(x) = (cos x + i sin x) (cos 2x + i sin 2x) (cos 3x + i sin 3x) ...... (cos nx + i sin nx) and f(1) = 1, then f'' (1) is equal to
Let f(x) be a polynomial. Then, the second order derivative of f(ex) is
If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =
If y = (sin−1 x)2, then (1 − x2)y2 is equal to
If xy = e(x – y), then show that `dy/dx = (y(x-1))/(x(y+1)) .`
Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base.