मराठी

If X = F(T) Cos T − F' (T) Sin T and Y = F(T) Sin T + F'(T) Cos T, Then ( D X D T ) 2 + ( D Y D T ) 2 = (A) F(T) − F''(T) - Mathematics

Advertisements
Advertisements

प्रश्न

If x = f(t) cos t − f' (t) sin t and y = f(t) sin t + f'(t) cos t, then\[\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2 =\]

 

पर्याय

  •  f(t) − f''(t)

  • {f(t) − f'' (t)}2

  • {f(t) + f''(t)}2

  • none of these

MCQ

उत्तर

(c){f(t) + f''(t)}2

Here,

\[x = f\left( t \right)\cos t - f^{'} \left( t \right) \sin t \text { and y } = f\left( t \right) \sin t + f^{'} \left( t \right)\cos t\]

\[ \Rightarrow \frac{d x}{d t} = f^{'} \left( t \right)\cos t - f\left( t \right)\sin t - f^{''} \left( t \right)\sin t - f^{'} \left( t \right)\cos t \text { and } \frac{d y}{d t} = f^{'} \left( t \right) \sin t + f\left( t \right)\cos t + f^{''} \left( t \right)\cos t - f^{'} \left( t \right) \sin t\]

\[ \Rightarrow \frac{d x}{d t} = - f\left( t \right)\sin t - f^{''} \left( t \right)\sin t \text { and } \frac{d y}{d t} = f\left( t \right)\cos t + f^{''} \left( t \right)\cos t\]

\[\text { Thus }, \]

\[ \left( \frac{d x}{d t} \right)^2 + \left( \frac{d y}{d t} \right)^2 = \left\{ - f\left( t \right)\sin t - f^{''} \left( t \right)\sin t \right\}^2 + \left\{ f\left( t \right)\cos t + f^{''} \left( t \right)\cos t \right\}^2 \]

\[ = \left\{ f\left( t \right)\sin t + f^{''} \left( t \right)\sin t \right\}^2 + \left\{ f\left( t \right)\cos t + f^{''} \left( t \right)\cos t \right\}^2 \]

\[ = \sin^2 t \left\{ f\left( t \right) + f^{''} \left( t \right) \right\}^2 + \cos^2 t \left\{ f\left( t \right) + f^{''} \left( t \right) \right\}^2 \]

\[ = \left\{ f\left( t \right) + f^{''} \left( t \right) \right\}^2 \left( \sin^2 t + \cos^2 t \right)\]

\[ = \left\{ f\left( t \right) + f^{''} \left( t \right) \right\}^2\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 12: Higher Order Derivatives - Exercise 12.3 [पृष्ठ २४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 12 Higher Order Derivatives
Exercise 12.3 | Q 21 | पृष्ठ २४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is `cos^(-1)(1/sqrt3)`


Differentiate sin (log x) ?


Differentiate \[\frac{e^{2x} + e^{- 2x}}{e^{2x} - e^{- 2x}}\] ?


Differentiate  \[e^x \log \sin 2x\] ?


If \[y = e^x \cos x\] ,prove that \[\frac{dy}{dx} = \sqrt{2} e^x \cdot \cos \left( x + \frac{\pi}{4} \right)\] ?


Differentiate \[\cos^{- 1} \left\{ 2x\sqrt{1 - x^2} \right\}, \frac{1}{\sqrt{2}} < x < 1\] ?


Differentiate \[\sin^{- 1} \left( 2 x^2 - 1 \right), 0 < x < 1\]  ?


Differentiate \[\tan^{- 1} \left( \frac{2^{x + 1}}{1 - 4^x} \right), - \infty < x < 0\] ?


Differentiate \[\tan^{- 1} \left( \frac{x}{1 + 6 x^2} \right)\] ?


If \[y \sqrt{1 - x^2} + x \sqrt{1 - y^2} = 1\] ,prove that \[\frac{dy}{dx} = - \sqrt{\frac{1 - y^2}{1 - x^2}}\] ?


If \[x \sqrt{1 + y} + y \sqrt{1 + x} = 0\] , prove that \[\left( 1 + x \right)^2 \frac{dy}{dx} + 1 = 0\]  ?


If \[\log \sqrt{x^2 + y^2} = \tan^{- 1} \left( \frac{y}{x} \right)\] Prove that \[\frac{dy}{dx} = \frac{x + y}{x - y}\] ?


If \[xy \log \left( x + y \right) = 1\] ,Prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?


Differentiate \[\left( 1 + \cos x \right)^x\] ?


If \[x^y \cdot y^x = 1\] , prove that \[\frac{dy}{dx} = - \frac{y \left( y + x \log y \right)}{x \left( y \log x + x \right)}\] ?


If \[y = \log\frac{x^2 + x + 1}{x^2 - x + 1} + \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{\sqrt{3} x}{1 - x^2} \right), \text{ find } \frac{dy}{dx} .\] ?


If \[\frac{dy}{dx}\] when \[x = a \cos \theta \text{ and } y = b \sin \theta\] ?


If \[x = \sin^{- 1} \left( \frac{2 t}{1 + t^2} \right) \text{ and y } = \tan^{- 1} \left( \frac{2 t}{1 - t^2} \right), - 1 < t < 1\] porve that \[\frac{dy}{dx} = 1\] ?

 


Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2 \sqrt{2}}, \frac{1}{\sqrt{2 \sqrt{2}}} \right)\] ?

Differentiate \[\tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right)\] with  respect to \[\sec^{- 1} x\] ?


Differentiate \[\tan^{- 1} \left( \frac{1 - x}{1 + x} \right)\] with respect to \[\sqrt{1 - x^2},\text {if} - 1 < x < 1\] ?


If \[y = \tan^{- 1} \left( \frac{1 - x}{1 + x} \right), \text{ find} \frac{dy}{dx}\]  ?


If \[x = 3\sin t - \sin3t, y = 3\cos t - \cos3t \text{ find }\frac{dy}{dx} \text{ at } t = \frac{\pi}{3}\] ?


If f (x) = logx2 (log x), the `f' (x)` at x = e is ____________ .


\[\frac{d}{dx} \left\{ \tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right) \right\} \text { equals }\] ______________ .


If \[f\left( x \right) = \sqrt{x^2 - 10x + 25}\]  then the derivative of f (x) in the interval [0, 7] is ____________ .


Find the second order derivatives of the following function e6x cos 3x  ?


If y = ex cos x, show that \[\frac{d^2 y}{d x^2} = 2 e^{- x} \sin x\] ?


If y = x3 log x, prove that \[\frac{d^4 y}{d x^4} = \frac{6}{x}\] ?


If x = a (θ − sin θ), y = a (1 + cos θ) prove that, find \[\frac{d^2 y}{d x^2}\] ?


If y = cosec−1 xx >1, then show that \[x\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + \left( 2 x^2 - 1 \right)\frac{dy}{dx} = 0\] ?


\[\text { If x } = \cos t + \log \tan\frac{t}{2}, y = \sin t, \text { then find the value of } \frac{d^2 y}{d t^2} \text { and } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?


If x = t2 and y = t3, find \[\frac{d^2 y}{d x^2}\] ?


If y = |x − x2|, then find \[\frac{d^2 y}{d x^2}\] ?


If f(x) = (cos x + i sin x) (cos 2x + i sin 2x) (cos 3x + i sin 3x) ...... (cos nx + i sin nx) and f(1) = 1, then f'' (1) is equal to

 


Let f(x) be a polynomial. Then, the second order derivative of f(ex) is



If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =


If y = (sin−1 x)2, then (1 − x2)y2 is equal to

 


If xy = e(x – y), then show that `dy/dx = (y(x-1))/(x(y+1)) .`


Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×