Advertisements
Advertisements
प्रश्न
If \[xy \log \left( x + y \right) = 1\] ,Prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?
उत्तर
\[\text{ We have, xy } \log\left( x + y \right) = 1\]
Differentiating it with respect to x,
\[\Rightarrow \frac{d}{dx}\left[ xy \log\left( x + y \right) \right] = \frac{d}{dx}\left( 1 \right)\]
\[ \Rightarrow xy\frac{d}{dx}\log\left( x + y \right) + x \log\left( x + y \right)\frac{d y}{d x} + y \log\left( x + y \right)\frac{d}{dx}\left( x \right) = 0 \left[ \text{ using chain rule and product rule } \right]\]
\[ \Rightarrow xy\left( \frac{1}{x + y} \right)\frac{d}{dx}\left( x + y \right) + x \log\left( x + y \right)\frac{d y}{d x} + y \log\left( x + y \right)\left( 1 \right) = 0\]
\[ \Rightarrow \left( \frac{xy}{x + y} \right) \left( 1 + \frac{d y}{d x} \right) + x \log\left( x + y \right)\frac{d y}{d x} + y \log\left( x + y \right) = 0\]
\[ \Rightarrow \left( \frac{xy}{x + y} \right)\frac{d y}{d x} + \left( \frac{xy}{x + y} \right) + x\left( \frac{1}{xy} \right)\frac{d y}{d x} + y\left( \frac{1}{xy} \right) = 0 \left[ \because xy \log\left( x + y \right) = 1 \right]\]
\[ \Rightarrow \frac{d y}{d x}\left[ \frac{xy}{x + y} + \frac{1}{y} \right] = - \left[ \frac{1}{x} + \frac{xy}{x + y} \right]\]
\[ \Rightarrow \frac{d y}{d x}\left[ \frac{x y^2 + x + y}{\left( x + y \right)y} \right] = - \left[ \frac{x + y + x^2 y}{x\left( x + y \right)} \right]\]
\[ \Rightarrow \frac{d y}{d x} = - \left[ \frac{x + y + x^2 y}{x\left( x + y \right)} \right]\left[ \frac{y\left( x + y \right)}{x y^2 + x + y} \right]\]
\[ \Rightarrow \frac{d y}{d x} = - \frac{y}{x}\left( \frac{x + y + x^2 y}{x + y + x y^2} \right)\]
Hence proved
APPEARS IN
संबंधित प्रश्न
If the function f(x)=2x3−9mx2+12m2x+1, where m>0 attains its maximum and minimum at p and q respectively such that p2=q, then find the value of m.
Differentiate sin (3x + 5) ?
Differentiate log7 (2x − 3) ?
Differentiate \[\sqrt{\frac{a^2 - x^2}{a^2 + x^2}}\] ?
Differentiate \[e^{3 x} \cos 2x\] ?
Differentiate \[\log \left( cosec x - \cot x \right)\] ?
Differentiate \[\sin^{- 1} \left( \frac{x}{\sqrt{x^2 + a^2}} \right)\] ?
Differentiate \[\frac{e^x \sin x}{\left( x^2 + 2 \right)^3}\] ?
If \[y = \frac{x}{x + 2}\] , prove tha \[x\frac{dy}{dx} = \left( 1 - y \right) y\] ?
Differentiate \[\tan^{- 1} \left( \frac{5 x}{1 - 6 x^2} \right), - \frac{1}{\sqrt{6}} < x < \frac{1}{\sqrt{6}}\] ?
If \[y = \sin^{- 1} \left( \frac{x}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right), 0 < x < \infty\] prove that \[\frac{dy}{dx} = \frac{2}{1 + x^2} \] ?
Find \[\frac{dy}{dx}\] in the following case \[x^5 + y^5 = 5 xy\] ?
Find \[\frac{dy}{dx}\] in the following case \[\left( x + y \right)^2 = 2axy\] ?
Find \[\frac{dy}{dx}\] in the following case \[\sin xy + \cos \left( x + y \right) = 1\] ?
Differentiate \[\left( \log x \right)^{ \log x }\] ?
Differentiate \[x^{\sin^{- 1} x}\] ?
Differentiate \[x^\left( \sin x - \cos x \right) + \frac{x^2 - 1}{x^2 + 1}\] ?
Differentiate \[e^{\sin x }+ \left( \tan x \right)^x\] ?
If \[x^{13} y^7 = \left( x + y \right)^{20}\] prove that \[\frac{dy}{dx} = \frac{y}{x}\] ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right), \text { if }- \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?
Differentiate \[\sin^{- 1} \left( 2 ax \sqrt{1 - a^2 x^2} \right)\] with respect to \[\sqrt{1 - a^2 x^2}, \text{ if }-\frac{1}{\sqrt{2}} < ax < \frac{1}{\sqrt{2}}\] ?
If \[y = x^x , \text{ find } \frac{dy}{dx} \text{ at } x = e\] ?
If \[y = \sec^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right)\] then write the value of \[\frac{dy}{dx} \] ?
The differential coefficient of f (log x) w.r.t. x, where f (x) = log x is ___________ .
If \[3 \sin \left( xy \right) + 4 \cos \left( xy \right) = 5, \text { then } \frac{dy}{dx} =\] _____________ .
If \[f\left( x \right) = \left( \frac{x^l}{x^m} \right)^{l + m} \left( \frac{x^m}{x^n} \right)^{m + n} \left( \frac{x^n}{x^l} \right)^{n + 1}\] the f' (x) is equal to _____________ .
Find the second order derivatives of the following function x3 + tan x ?
Find the second order derivatives of the following function e6x cos 3x ?
Find the second order derivatives of the following function x cos x ?
If y = 3 cos (log x) + 4 sin (log x), prove that x2y2 + xy1 + y = 0 ?
\[\text { If y } = x^n \left\{ a \cos\left( \log x \right) + b \sin\left( \log x \right) \right\}, \text { prove that } x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)x\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0 \] Disclaimer: There is a misprint in the question. It must be
\[x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)x\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0\] instead of 1
\[x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0\] ?
If x = f(t) and y = g(t), then write the value of \[\frac{d^2 y}{d x^2}\] ?
If x = at2, y = 2 at, then \[\frac{d^2 y}{d x^2} =\]
If f(x) = (cos x + i sin x) (cos 2x + i sin 2x) (cos 3x + i sin 3x) ...... (cos nx + i sin nx) and f(1) = 1, then f'' (1) is equal to
If \[y = \tan^{- 1} \left\{ \frac{\log_e \left( e/ x^2 \right)}{\log_e \left( e x^2 \right)} \right\} + \tan^{- 1} \left( \frac{3 + 2 \log_e x}{1 - 6 \log_e x} \right)\], then \[\frac{d^2 y}{d x^2} =\]
If y = sin (m sin−1 x), then (1 − x2) y2 − xy1 is equal to
If y = etan x, then (cos2 x)y2 =
If \[y = \log_e \left( \frac{x}{a + bx} \right)^x\] then x3 y2 =
If y = xx, prove that \[\frac{d^2 y}{d x^2} - \frac{1}{y} \left( \frac{dy}{dx} \right)^2 - \frac{y}{x} = 0 .\]
If p, q, r, s are real number and pr = 2(q + s) then for the equation x2 + px + q = 0 and x2 + rx + s = 0 which of the following statement is true?