मराठी

If X Y Log ( X + Y ) = 1 ,Prove that D Y D X = − Y ( X 2 Y + X + Y ) X ( X Y 2 + X + Y ) ? - Mathematics

Advertisements
Advertisements

प्रश्न

If \[xy \log \left( x + y \right) = 1\] ,Prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?

उत्तर

\[\text{ We have, xy }  \log\left( x + y \right) = 1\]

Differentiating it with respect to x,

\[\Rightarrow \frac{d}{dx}\left[ xy \log\left( x + y \right) \right] = \frac{d}{dx}\left( 1 \right)\]

\[ \Rightarrow xy\frac{d}{dx}\log\left( x + y \right) + x \log\left( x + y \right)\frac{d y}{d x} + y \log\left( x + y \right)\frac{d}{dx}\left( x \right) = 0 \left[ \text{ using chain rule and product rule }  \right]\]

\[ \Rightarrow xy\left( \frac{1}{x + y} \right)\frac{d}{dx}\left( x + y \right) + x \log\left( x + y \right)\frac{d y}{d x} + y \log\left( x + y \right)\left( 1 \right) = 0\]

\[ \Rightarrow \left( \frac{xy}{x + y} \right) \left( 1 + \frac{d y}{d x} \right) + x \log\left( x + y \right)\frac{d y}{d x} + y \log\left( x + y \right) = 0\]

\[ \Rightarrow \left( \frac{xy}{x + y} \right)\frac{d y}{d x} + \left( \frac{xy}{x + y} \right) + x\left( \frac{1}{xy} \right)\frac{d y}{d x} + y\left( \frac{1}{xy} \right) = 0 \left[ \because xy \log\left( x + y \right) = 1 \right]\]

\[ \Rightarrow \frac{d y}{d x}\left[ \frac{xy}{x + y} + \frac{1}{y} \right] = - \left[ \frac{1}{x} + \frac{xy}{x + y} \right]\]

\[ \Rightarrow \frac{d y}{d x}\left[ \frac{x y^2 + x + y}{\left( x + y \right)y} \right] = - \left[ \frac{x + y + x^2 y}{x\left( x + y \right)} \right]\]

\[ \Rightarrow \frac{d y}{d x} = - \left[ \frac{x + y + x^2 y}{x\left( x + y \right)} \right]\left[ \frac{y\left( x + y \right)}{x y^2 + x + y} \right]\]

\[ \Rightarrow \frac{d y}{d x} = - \frac{y}{x}\left( \frac{x + y + x^2 y}{x + y + x y^2} \right)\]

Hence proved

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Differentiation - Exercise 11.04 [पृष्ठ ७५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 11 Differentiation
Exercise 11.04 | Q 20 | पृष्ठ ७५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If the function f(x)=2x39mx2+12m2x+1, where m>0 attains its maximum and minimum at p and q respectively such that p2=q, then find the value of m.

 


Differentiate sin (3x + 5) ?


Differentiate log7 (2x − 3) ?


Differentiate \[\sqrt{\frac{a^2 - x^2}{a^2 + x^2}}\] ?


Differentiate \[e^{3 x} \cos 2x\] ?


Differentiate \[\log \left( cosec x - \cot x \right)\] ?


Differentiate \[\sin^{- 1} \left( \frac{x}{\sqrt{x^2 + a^2}} \right)\] ?


Differentiate \[\frac{e^x \sin x}{\left( x^2 + 2 \right)^3}\] ?


If \[y = \frac{x}{x + 2}\]  , prove tha \[x\frac{dy}{dx} = \left( 1 - y \right) y\] ? 


Differentiate \[\tan^{- 1} \left( \frac{5 x}{1 - 6 x^2} \right), - \frac{1}{\sqrt{6}} < x < \frac{1}{\sqrt{6}}\] ?


If \[y = \sin^{- 1} \left( \frac{x}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right), 0 < x < \infty\] prove that  \[\frac{dy}{dx} = \frac{2}{1 + x^2} \] ?

 


Find  \[\frac{dy}{dx}\] in the following case \[x^5 + y^5 = 5 xy\] ?

 


Find  \[\frac{dy}{dx}\] in the following case \[\left( x + y \right)^2 = 2axy\] ?

 


Find  \[\frac{dy}{dx}\] in the following case \[\sin xy + \cos \left( x + y \right) = 1\] ?

 


Differentiate \[\left( \log x \right)^{ \log x }\] ?


Differentiate \[x^{\sin^{- 1} x}\]  ?


Differentiate \[x^\left( \sin x - \cos x \right) + \frac{x^2 - 1}{x^2 + 1}\] ?


Differentiate \[e^{\sin x }+ \left( \tan x \right)^x\] ?


If \[x^{13} y^7 = \left( x + y \right)^{20}\] prove that \[\frac{dy}{dx} = \frac{y}{x}\] ?


Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right), \text { if }- \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?


Differentiate \[\sin^{- 1} \left( 2 ax \sqrt{1 - a^2 x^2} \right)\] with respect to \[\sqrt{1 - a^2 x^2}, \text{ if }-\frac{1}{\sqrt{2}} < ax < \frac{1}{\sqrt{2}}\] ?


If \[y = x^x , \text{ find } \frac{dy}{dx} \text{ at } x = e\] ?


If \[y = \sec^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right)\] then write the value of \[\frac{dy}{dx} \] ?


The differential coefficient of f (log x) w.r.t. x, where f (x) = log x is ___________ .


If \[3 \sin \left( xy \right) + 4 \cos \left( xy \right) = 5, \text { then } \frac{dy}{dx} =\] _____________ .


If \[f\left( x \right) = \left( \frac{x^l}{x^m} \right)^{l + m} \left( \frac{x^m}{x^n} \right)^{m + n} \left( \frac{x^n}{x^l} \right)^{n + 1}\] the f' (x) is equal to _____________ .


Find the second order derivatives of the following function  x3 + tan x ?


Find the second order derivatives of the following function e6x cos 3x  ?


Find the second order derivatives of the following function x cos x ?


If y = 3 cos (log x) + 4 sin (log x), prove that x2y2 + xy1 + y = 0 ?


\[\text { If y } = x^n \left\{ a \cos\left( \log x \right) + b \sin\left( \log x \right) \right\}, \text { prove that } x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)x\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0 \] Disclaimer: There is a misprint in the question. It must be 

\[x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)x\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0\] instead of 1

\[x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0\] ?


If x = f(t) and y = g(t), then write the value of \[\frac{d^2 y}{d x^2}\] ?


If x = at2, y = 2 at, then \[\frac{d^2 y}{d x^2} =\] 

 


If f(x) = (cos x + i sin x) (cos 2x + i sin 2x) (cos 3x + i sin 3x) ...... (cos nx + i sin nx) and f(1) = 1, then f'' (1) is equal to

 


If \[y = \tan^{- 1} \left\{ \frac{\log_e \left( e/ x^2 \right)}{\log_e \left( e x^2 \right)} \right\} + \tan^{- 1} \left( \frac{3 + 2 \log_e x}{1 - 6 \log_e x} \right)\], then \[\frac{d^2 y}{d x^2} =\]

 


If y = sin (m sin−1 x), then (1 − x2) y2 − xy1 is equal to


If y = etan x, then (cos2 x)y2 =


If \[y = \log_e \left( \frac{x}{a + bx} \right)^x\] then x3 y2 =

 


If y = xx, prove that \[\frac{d^2 y}{d x^2} - \frac{1}{y} \left( \frac{dy}{dx} \right)^2 - \frac{y}{x} = 0 .\]


If p, q, r, s are real number and pr = 2(q + s) then for the equation x2 + px + q = 0 and x2 + rx + s = 0 which of the following statement is true?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×