Advertisements
Advertisements
प्रश्न
If \[y = x^x , \text{ find } \frac{dy}{dx} \text{ at } x = e\] ?
उत्तर
\[\text{ We have, y } = x^x ......... \left( i \right)\]
Taking log on both sides,
\[\log y = \log x^x \]
\[ \Rightarrow \log y = x \log x\]
\[\Rightarrow \frac{1}{y}\frac{dy}{dx} = x\frac{d}{dx}\left( \log x \right) + \log x\frac{d}{dx}\left( x \right)\]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = x\left( \frac{1}{x} \right) + \log x \left( 1 \right)\]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = 1 + \log x\]
\[ \Rightarrow \frac{dy}{dx} = y\left( 1 + \log x \right)\]
\[ \Rightarrow \frac{dy}{dx} = x^x \left( 1 + \log x \right) .............\left[\text{ using equation} \left( i \right) \right]\]
\[\text{ Puting x = e, we get}, \]
\[\frac{dy}{dx} = e^e \left( 1 + \log_e e \right)\]
\[ \Rightarrow \frac{dy}{dx} = e^e \left( 1 + 1 \right) .............\left[ \because \log_e e = 1 \right]\]
\[ \Rightarrow \frac{dy}{dx} = 2 e^e\]
APPEARS IN
संबंधित प्रश्न
If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum, when the angle between them is 60º.
Differentiate \[\sqrt{\frac{a^2 - x^2}{a^2 + x^2}}\] ?
Differentiate (log sin x)2 ?
Differentiate \[e^{\tan 3 x} \] ?
Differentiate \[e^\sqrt{\cot x}\] ?
Differentiate \[\tan^{- 1} \left( e^x \right)\] ?
Differentiate \[e^{\tan^{- 1}} \sqrt{x}\] ?
Differentiate \[\log \left( \cos x^2 \right)\] ?
If \[y = \log \sqrt{\frac{1 + \tan x}{1 - \tan x}}\] prove that \[\frac{dy}{dx} = \sec 2x\] ?
Differentiate \[\cos^{- 1} \left( \frac{1 - x^{2n}}{1 + x^{2n}} \right), < x < \infty\] ?
Differentiate \[\tan^{- 1} \left( \frac{\sqrt{x} + \sqrt{a}}{1 - \sqrt{xa}} \right)\] ?
If \[xy \log \left( x + y \right) = 1\] ,Prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?
Differentiate \[x^{1/x}\] with respect to x.
Find \[\frac{dy}{dx}\] \[y = \sin x \sin 2x \sin 3x \sin 4x\] ?
Find \[\frac{dy}{dx}\] \[y = x^x + \left( \sin x \right)^x\] ?
Find \[\frac{dy}{dx}\] \[y = x^{\log x }+ \left( \log x \right)^x\] ?
If \[y^x = e^{y - x}\] ,prove that \[\frac{dy}{dx} = \frac{\left( 1 + \log y \right)^2}{\log y}\] ?
Find \[\frac{dy}{dx}\], when \[x = a \left( \cos \theta + \theta \sin \theta \right) \text{ and }y = a \left( \sin \theta - \theta \cos \theta \right)\] ?
Find \[\frac{dy}{dx}\] , when \[x = \cos^{- 1} \frac{1}{\sqrt{1 + t^2}} \text{ and y } = \sin^{- 1} \frac{t}{\sqrt{1 + t^2}}, t \in R\] ?
If \[x = a\left( t + \frac{1}{t} \right) \text{ and y } = a\left( t - \frac{1}{t} \right)\] ,prove that \[\frac{dy}{dx} = \frac{x}{y}\]?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right), \text { if }- \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?
Differentiate \[\tan^{- 1} \left( \frac{1 - x}{1 + x} \right)\] with respect to \[\sqrt{1 - x^2},\text {if} - 1 < x < 1\] ?
If \[y = x \left| x \right|\] , find \[\frac{dy}{dx} \text{ for } x < 0\] ?
If \[y = \left( 1 + \frac{1}{x} \right)^x , \text{ then} \frac{dy}{dx} =\] ____________ .
The derivative of \[\sec^{- 1} \left( \frac{1}{2 x^2 + 1} \right) \text { w . r . t }. \sqrt{1 + 3 x} \text { at } x = - 1/3\]
If \[\sin y = x \sin \left( a + y \right), \text { then }\frac{dy}{dx} \text { is}\] ____________ .
If \[y = \sqrt{\sin x + y}, \text { then }\frac{dy}{dx} \text { equals }\] ______________ .
Find the second order derivatives of the following function log (sin x) ?
If y log (1 + cos x), prove that \[\frac{d^3 y}{d x^3} + \frac{d^2 y}{d x^2} \cdot \frac{dy}{dx} = 0\] ?
\[ \text { If x } = a \sin t \text { and y } = a\left( \cos t + \log \tan\frac{t}{2} \right), \text { find } \frac{d^2 y}{d x^2} \] ?
\[\text { If y } = a \left\{ x + \sqrt{x^2 + 1} \right\}^n + b \left\{ x - \sqrt{x^2 + 1} \right\}^{- n} , \text { prove that }\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \]
Disclaimer: There is a misprint in the question,
\[\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0\] must be written instead of
\[\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \] ?
If y = x + ex, find \[\frac{d^2 x}{d y^2}\] ?
If x = f(t) and y = g(t), then write the value of \[\frac{d^2 y}{d x^2}\] ?
If \[f\left( x \right) = \frac{\sin^{- 1} x}{\sqrt{1 - x^2}}\] then (1 − x)2 f '' (x) − xf(x) =
If y = (sin−1 x)2, then (1 − x2)y2 is equal to
If x = f(t) cos t − f' (t) sin t and y = f(t) sin t + f'(t) cos t, then\[\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2 =\]
f(x) = xx has a stationary point at ______.