मराठी

If Sin Y = X Sin ( a + Y ) , Then D Y D X is (A) Sin a Sin a Sin 2 ( a + Y ) - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\sin y = x \sin \left( a + y \right), \text { then }\frac{dy}{dx} \text { is}\] ____________ .

पर्याय

  • \[\frac{\sin a}{\sin a \sin^2 \left( a + y \right)}\]

  • \[\frac{\sin^2 \left( a + y \right)}{\sin a}\]

  • \[\sin a \sin^2 \left( a + y \right)\]

  • \[\frac{\sin^2 \left( a - y \right)}{\sin a}\]

MCQ

उत्तर

\[\frac{\sin^2 \left( a + y \right)}{\sin a}\]

 

\[\text { We have,} \sin y = x \sin\left( a + y \right)\]

\[\Rightarrow \frac{d}{dx}\left( \sin y \right) = \frac{d}{dx}\left[ x \sin\left( a + y \right) \right]\]
\[ \Rightarrow \cos y\frac{dy}{dx} = \sin\left( a + y \right)\frac{d}{dx}\left( x \right) + x\frac{d}{dx}\left\{ \sin\left( a + y \right) \right\}\]
\[ \Rightarrow \cos y\frac{dy}{dx} = \sin\left( a + y \right) \times 1 + x \cos\left( a + y \right)\frac{dy}{dx}\]
\[ \Rightarrow \cos y\frac{dy}{dx} = \sin\left( a + y \right) + x \cos\left( a + y \right)\frac{dy}{dx}\]
\[ \Rightarrow \cos y\frac{dy}{dx} - x \cos\left( a + y \right)\frac{dy}{dx} = \sin\left( a + y \right)\]
\[ \Rightarrow \left\{ \cos y - x \cos \left( a + y \right) \right\}\frac{dy}{dx} = \sin\left( a + y \right)\]
\[ \Rightarrow \left\{ \cos y - \frac{\sin y}{\sin\left( a + y \right)} \times \cos\left( a + y \right) \right\}\frac{dy}{dx} = \sin\left( a + y \right) .............\binom{\because \sin y = 2 \sin x \cos x}{ \therefore x = \frac{\sin y}{\sin\left( a + y \right)}}\]
\[ \Rightarrow \left\{ \frac{\sin\left( a + y \right) \cos y - \sin y \cos\left( a + y \right)}{\sin\left( a + y \right)} \right\}\frac{dy}{dx} = \sin\left( a + y \right)\]
\[ \Rightarrow \frac{\sin\left( a + y - y \right)}{\sin\left( a + y \right)} \times \frac{dy}{dx} = \sin\left( a + y \right) \]
\[ \Rightarrow \frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Differentiation - Exercise 11.10 [पृष्ठ १२०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 11 Differentiation
Exercise 11.10 | Q 19 | पृष्ठ १२०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Differentiate the following functions from first principles ecos x.


Differentiate the following functions from first principles log cosec x ?


Differentiate `2^(x^3)` ?


Differentiate \[\sqrt{\frac{a^2 - x^2}{a^2 + x^2}}\] ?


Differentiate \[\sqrt{\frac{1 - x^2}{1 + x^2}}\] ?


Differentiate \[e^{\sin^{- 1} 2x}\] ?


Differentiate \[\frac{e^x \sin x}{\left( x^2 + 2 \right)^3}\] ?


Differentiate \[\sin^{- 1} \left\{ \sqrt{1 - x^2} \right\}, 0 < x < 1\] ?


Differentiate \[\sin^{- 1} \left( 1 - 2 x^2 \right), 0 < x < 1\] ?


Differentiate \[\tan^{- 1} \left( \frac{2^{x + 1}}{1 - 4^x} \right), - \infty < x < 0\] ?


Differentiate \[\sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), x \in R\] ?


Find  \[\frac{dy}{dx}\]  \[y = \left( \sin x \right)^{\cos x} + \left( \cos x \right)^{\sin x}\] ?

 


If \[x^x + y^x = 1\], prove that \[\frac{dy}{dx} = - \left\{ \frac{x^x \left( 1 + \log x \right) + y^x \cdot \log y}{x \cdot y^\left( x - 1 \right)} \right\}\] ?


If \[x^m y^n = 1\] , prove that \[\frac{dy}{dx} = - \frac{my}{nx}\] ?


If \[y = \left( \sin x - \cos x \right)^{\sin x - \cos x} , \frac{\pi}{4} < x < \frac{3\pi}{4}, \text{ find} \frac{dy}{dx}\] ?


If \[\frac{dy}{dx}\] when \[x = a \cos \theta \text{ and } y = b \sin \theta\] ?


Find \[\frac{dy}{dx}\] ,When \[x = a \left( 1 - \cos \theta \right) \text{ and } y = a \left( \theta + \sin \theta \right) \text{ at } \theta  = \frac{\pi}{2}\] ?


If \[x = \left( t + \frac{1}{t} \right)^a , y = a^{t + \frac{1}{t}} , \text{ find } \frac{dy}{dx}\] ?


Differentiate x2 with respect to x3


Differentiate log (1 + x2) with respect to tan−1 x ?


Differentiate (log x)x with respect to log x ?


Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2 \sqrt{2}}, \frac{1}{\sqrt{2 \sqrt{2}}} \right)\] ?

Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2}, - \frac{1}{2 \sqrt{2}} \right)\] ?


Differentiate \[\sin^{- 1} \left( 2 ax \sqrt{1 - a^2 x^2} \right)\] with respect to \[\sqrt{1 - a^2 x^2}, \text{ if }-\frac{1}{\sqrt{2}} < ax < \frac{1}{\sqrt{2}}\] ?


If \[y = x \left| x \right|\] , find \[\frac{dy}{dx} \text{ for } x < 0\] ?


The derivative of the function \[\cot^{- 1} \left| \left( \cos 2 x \right)^{1/2} \right| \text{ at } x = \pi/6 \text{ is }\] ______ .


If \[x^y = e^{x - y} ,\text{ then } \frac{dy}{dx}\] is __________ .


\[\frac{d}{dx} \left\{ \tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right) \right\} \text { equals }\] ______________ .


Find the second order derivatives of the following function sin (log x) ?


If y = (tan−1 x)2, then prove that (1 + x2)2 y2 + 2x(1 + x2)y1 = 2 ?


If y = 3 e2x + 2 e3x, prove that  \[\frac{d^2 y}{d x^2} - 5\frac{dy}{dx} + 6y = 0\] ?


\[\text { If x } = a \sin t - b \cos t, y = a \cos t + b \sin t, \text { prove that } \frac{d^2 y}{d x^2} = - \frac{x^2 + y^2}{y^3} \] ?


If \[y = \frac{ax + b}{x^2 + c}\] then (2xy1 + y)y3 = 

 


If \[y^\frac{1}{n} + y^{- \frac{1}{n}} = 2x, \text { then find } \left( x^2 - 1 \right) y_2 + x y_1 =\] ?


Find the minimum value of (ax + by), where xy = c2.


Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base. 


Find the height of a cylinder, which is open at the top, having a given surface area, greatest volume, and radius r.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×